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Abstract
Metal organic framework (MOF) materials have attracted a lot of attention due to their
numerous applications in fields such as hydrogen storage, carbon capture and gas
sequestration. In all these applications, van der Waals forces dominate the interaction between
the small guest molecules and the walls of the MOFs. In this review article, we describe how a
combined theoretical and experimental approach can successfully be used to study those weak
interactions and elucidate the adsorption mechanisms important for various applications. On
the theory side, we show that, while standard density functional theory is not capable of
correctly describing van der Waals interactions, functionals especially designed to include van
der Waals forces exist, yielding results in remarkable agreement with experiment. From the
experimental point of view, we show examples in which IR adsorption and Raman
spectroscopy are essential to study molecule/MOF interactions. Importantly, we emphasize
throughout this review that a combination of theory and experiment is crucial to effectively
gain further understanding. In particular, we review such combined studies for the adsorption
mechanism of small molecules in MOFs, the chemical stability of MOFs under humid
conditions, water cluster formation inside MOFs, and the diffusion of small molecules into
MOFs. The understanding of these phenomena is critical for the rational design of new MOFs
with desired properties.

Keywords: metal organic frameworks, van der Waals, vdW-DF, IR adsorption and Raman
spectroscopy
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1. Introduction

Metal organic framework (MOF) materials are nano-porous
materials comprised of metal centers, which are linked by
organic ligands. Over the past decade, MOFs have attracted
a surge of attention due to their extraordinary properties,
useful for hydrogen storage [1–4], CO2 capture [5–9], catalysis
[10–12] and sensing [13] among others [14, 15]. Part of
the success of MOFs also has to do with their often simple
synthesis, i.e. by combining the organic ligands and the
metallic salt in a solvothermal reaction [16, 17]. Most practical
applications of MOFs rely on a specific interaction of the
MOF with small molecules. This interaction—typically of
a weak van der Waals type—has thus been at the center of
many experimental and theoretical studies. It is exactly the
understanding of this interaction that will allow us to interpret
the properties of current MOFs better, and design new and
improved MOFs with desired properties. For example, we
do know that, in general, the surface area of the MOFs and
the binding strength to the metal centers are the two main
factors controlling the uptake of small molecules. However,
the exact correlation between those properties is unclear [18].
Another example that concerns much current research, is
trying to address the problem of low stability of MOFs
under humid conditions. While some progress has been
made [19–24], the newly found water-resistant MOFs often
lack the desired specific molecular uptakes that are needed.
Overall, progress has been slow to address such questions
due to a lack of appropriate methods to study the molecular
interactions inside MOFs. In the present review article we
highlight a strategy, combining experiment and theory, that
overcomes these problems and has been particularly successful
in unraveling van der Waals interactions in MOFs.

The experimental study of those interactions often relies
on powerful vibrational spectroscopy such as infrared (IR)
absorption and Raman scattering, which indirectly provide
information about the molecular adsorption process taking
place in the MOF. The theoretical description with ab
initio methods, due to the typical size of MOF unit cells

and their extended nature, rules out most highly accurate
quantum-chemistry approaches and leaves density functional
theory (DFT) as the only viable option. Historically, however,
standard exchange–correlation functionals within DFT such
as the local density approximation (LDA) and the generalized
gradient approximation (GGA) only poorly capture van der
Waals interactions. We will show here that the specially
designed functional vdW-DF [25–27] is in fact capable of
describing van der Waals interactions reliably and gives results
in remarkable agreement with experiment.

This review article aims to showcase the importance of
IR and Raman spectroscopy techniques combined with ab
initio simulations at the DFT level (utilizing vdW-DF) as
a promising way to study and rationally design complex
systems where van der Waals bonding plays a major role.
To this end, this work is divided into several sections. In
section 2, we give a description of the successes and failures
of vibrational spectroscopic techniques to study van der Waals
interactions. Then, in section 3, we present a description of the
computer simulations used to describe and interpret complex
spectroscopic experiments. In section 4, we present several
relevant examples where the combination of experiment and
theory explains the behavior of various MOF systems and
provides much needed understanding. We conclude with a
short summary and outlook in section 5.

2. Success and failure of vibrational spectroscopies
to study van der Waals interactions

2.1. IR and Raman spectroscopy of small molecule adsorption
in MOFs

IR and Raman spectroscopy provide complementary
information about bonding configurations through their
vibrational spectra. IR spectra reflect photon absorption during
transitions from ground to first-excited vibrational levels
(ν = 0→ 1) in the electronic ground state, requiring a dynamic
dipole moment (associated with a change in the dipole moment
during the vibrational motion) [28]. In contrast, Raman
spectroscopy is based on photon scattering by molecules
and has its origin in the electronic polarization caused
by monochromatic visible radiation [28, 29]. Therefore, a
vibrational mode is Raman active if the polarizability is
modulated during the vibration [28, 29]. Strict selection
rules exist for both spectroscopies, sometimes leading to
complementary detection [29]. For example, the vibration of
the homopolar diatomic molecule H2 is not IR active (due
to the absence of a fluctuating dipole associated with the
symmetric stretching), but strongly Raman active. However,
once the molecule interacts with the MOF, it undergoes a
perturbation that slightly polarizes the originally symmetric
molecule and makes it weakly IR active. This perturbation
is usually accompanied by a red-shift of the H–H stretching
modes, located at 4161.1 and 4155 cm−1 for para and ortho H2,
respectively [30]. For the linear molecule CO2, the symmetric
stretch mode (ν1) is Raman active but not IR active, whereas
the antisymmetric modes (ν2 and ν3) are IR active [29].

Based on these principles, IR and Raman spectroscopy
can be very useful tools to characterize the nature of
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host/guest interactions [31–34] in MOFs. Particularly valuable
information can be gained by identifying perturbations of
the IR active modes. For example, the first spectroscopic
evidence for the formation of an electron-donor–acceptor
(EDA) complex between CO2 and functional groups of MOFs
was observed in a MOF of type MIL-53 and reported in later
studies of the adsorption of CO2 in amino-based MOFs [32,
33]. The adsorption of CO2 molecules in MIL-53 leads to
a modest red-shift from −10 to −15 cm−1 of the stretching
mode ν3 and to a splitting of the bending mode ν2 due to
the removal of degeneracy of the in-plane and out-of-plane
bends [32]. A similar splitting of ν2 modes is common in
many electron-donor–acceptor complexes of CO2 with organic
solvents or polymers possessing electron-donating functional
groups—e.g., carbonyl groups—due to the interaction of
the carbon atom of CO2 as the electron acceptor [35, 36].
Moreover, significant perturbations of both ν(OH) and σ (OH)
bands of hydroxyl groups (ν(OH)= 19 cm−1 and σ(OH)=
30 cm−1) suggest that oxygen atoms of the framework
hydroxyl group act as the electron donor [32].

As evident from these examples (and many others), it is
clear that IR and Raman spectroscopy, by themselves and even
without the aid of theoretical calculations, can often provide
insight into the interactions between guest molecules and the
MOF. However, as we will see in the next section, in other cases
the ‘blind’ application of these spectroscopic techniques can
lead to a significant misinterpretation of the experimental data
obtained. This can happen when IR and Raman spectroscopy
are used as indirect probes—i.e. deducing other physical
properties of the system from a simple red- or blue-shift in
the spectrum. In such cases, theory and computer simulations
are essential to derive a complete understanding, as they
provide direct access to many properties of the system, and
often provide interpretations that are unexpected from simple
correlations in the experimental data.

2.2. Difficulty of IR and Raman spectroscopy to describe small
molecule adsorption in MOFs

Despite the high sensitivity of spectroscopy to molecular
interactions with the MOF, attention must be paid when inter-
preting the data to extract information about the interaction
from vibrational frequency shifts, intensities and line widths
[37, 38]. For example, it is commonly accepted that the
magnitude of the IR shift of small adsorbed molecules in
MOFs is directly related to their adsorption energy, and thus
the IR shift can be used indirectly to estimate the relative
adsorption energies. However, in our recent IR spectroscopy
study of molecular hydrogen in a number of different MOF
compounds [37], we find that there is no clear correlation
between H2 adsorption energies (determined by isotherm
measurements) and the magnitude of the H2 stretch shift.
In fact, metal-formate M3(HCOO)6 (M = Co, Ni and Mn)
compounds with the highest adsorption energy have the lowest
hydrogen IR shift. In this case, we find that the IR shift is
dominated by the environment (organic ligand, metal center
and structure) [37], rather than by the adsorption energy to the
metal.

Similarly, integrated areas for the specific IR bands were
long considered to be directly correlated with the amount
(loading) of adsorbed molecules, assuming that the dipole
moment of the adsorbed species is not affected by loading
or site geometry [39–41]. Based on this assumption, variable
temperature IR was used to measure the absorbance of IR
bands (including that of H2 molecules) and estimate the
adsorption energy [39, 41]. However, our theoretical and
experimental findings for H2 molecules in MOF74 with
unsaturated metal centers indicate that large variations in the
induced dipole moment take place as a function of loading, due
to the interaction among adsorbed molecules [38]. In the case
of Mg-MOF74, the effective charge of H2 at the metal sites
weakens (from 0.021 e to 0.015 e as the loading increases
from 1 to 12 H2/primitive cell) as the neighboring sites are
occupied. Thus, the IR intensity is reduced by 50%, since it
is proportional to the square of the effective charge or the
dynamic dipole moment [38]. These findings suggest that the
integrated areas of IR bands do not always correlate with the
amount of H2 adsorbed, and possible variations in dynamic
dipole moments have to be taken into account.

In summary, IR and Raman spectroscopy can be very
helpful tools when studying small molecule adsorption
in MOFs. However, extreme caution is necessary when
utilizing those methods to make assumptions about adsorption
energies or loadings, as illustrated in the examples given
above. Under these circumstances, theoretical input using
first-principles calculations—specifically capable of dealing
with van der Waals interactions—is critical to interpret
experimental observations correctly.

2.3. Experimentation

Zecchina and coworkers first used transmission IR
spectroscopy to study the fundamental aspects of the
interaction between H2 and MOFs, mainly in the
low-temperature (<300 K) and low-pressure regime.
By means of the variable temperature infrared (VTIR)
spectroscopy method, the adsorption enthalpy was derived
by measuring the intensity of absorption bands as a function
of temperature [40, 42]. However, caution must be used
when using the VTIR method since the dipole moment
might change as a function of loading, as pointed out
above. More recent work [24, 37, 38, 43] has investigated
a series of small molecules (H2, CO2, CH4, SO2, H2O,
etc) using in situ IR absorption spectroscopy to quantify
the effect of their interaction with different types of MOFs
in a wide range of pressures (from 50 mTorr to 55 bar)
and temperatures (10–423 K). In order to perform the IR
measurements at and above room temperature, a portion
(∼10 mg) of MOF was lightly pressed onto a KBr
support and mounted into a high-temperature, high-pressure
cell (Specac product number P/N 5850c) and further
heated in vacuum for activation. During the annealing, the
removal of solvent molecules was monitored by in situ
IR spectroscopy. Then, the activated sample was cooled to
specific temperatures in order to perform the measurements
at specific pressure gas exposures. Measurements were
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performed in transmission using a liquid-N2 cooled InSb/MCT
detector. Similar measurements were also performed in a
Janis PTSHI series cold refrigerator (CCR) system for
low-temperature studies (<298 K). In addition to transmission
IR, diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS) was employed to investigate the dynamics of
H2 molecules adsorbed within the MOF74 compounds [33,
34]. Furthermore, DRIFTS has also been used to study
the interactions between CO2 and functional groups on
the organic ligands of some MOFs under the controlled
in situ cell environment [44–46].

Most recently, in situ Raman spectroscopy was also used
to study the structural response mechanism of flexible metal
organic frameworks Zn2(bpdc)2bpee [bpdc = 4,40-biphenyl
dicarboxylate and bpee = 1,2-bis(4-pyridyl)ethylene] upon
CO2, N2 and hydrocarbon molecules adsorption [47, 48]. In
this case, Raman spectroscopy is more suitable because the
phonon modes of the MOFs do not overwhelm the spectra as
they do in the case of IR spectra, which include a large number
of combination and overtone bands. By integrating a Linkam
FTIR600 cooling/heating stage, the activated sample was
measured under a controlled temperature and gas environment.
The changes on specific bonds in the MOF structure, monitored
by Raman spectroscopy, were correlated to the MOF structural
changes and the guest–host interactions.

3. Computer simulations as a tool to interpret
complex spectroscopic experiments

3.1. Ab initio modeling of materials

While very successful classical modeling techniques exist,
such as force field simulations, which are suitable for studying
very large systems, they are not capable of describing the
electronic structure of materials and the intricate role it plays
in many processes. In the case of MOF materials, we are
most interested in electronic-structure changes during the
adsorption and desorption of small molecules in their cavities,
as well as a number of catalytic processes. As such, unless
the cost is prohibitive, ab initio modeling techniques are the
methods of choice. For an overview of widely used materials-
modeling techniques, ranging from classical approaches to
high-level quantum-chemistry methods, see [49].

Modeling MOF materials with ab initio methods
presents a particular challenge. The adsorption/desorption
of small molecules in MOFs is often governed by
physisorption, i.e. weak van der Waals forces, which
are difficult to capture correctly with ab initio methods.
Correlated high-level quantum-chemistry approaches, such
as Møller–Plesset perturbation theory and coupled-cluster
methods [50], can describe van der Waals interactions, but
their computational cost limits them to small systems (∼100
and ∼30 atoms, respectively [51]) and their application to
large periodic systems, such as the MOFs of interest here, is
unpractical [52–57].

Density functional theory (DFT) [58], on the other
hand, has a much more favorable computational cost and
can be used for systems with up to 1000 atoms—in

linear-scaling DFT even up to 1000 000 atoms [51].
It is also easily implemented with periodic plane-wave
basis sets, such that treating periodic systems becomes
trivial. Unfortunately, with standard exchange–correlation
functionals, DFT cannot reliably describe van der Waals
interactions [59–62], a phenomenon where charge fluctuations
in one part of the system correlate with fluctuations in
another, resulting in an attractive force that is a truly
nonlocal correlation effect [63]. It follows that standard
local and semi-local functionals, such as LDA and GGA,
cannot reliably account for these nonlocal effects and
yield qualitatively erroneous predictions [64–67]. While
very promising extensions exist [64], most notably DFT-D
[68, 69], DFT-SAPT [70–72] and C6-based methods [73,
74], they are semi-empirical, perturbative and not seamlessly
self-consistent density functionals.

3.2. vdW-DF: a good compromise between cost and accuracy

We have overcome this problem and include van der
Waals forces self-consistently in DFT [26] in the form
of a van der Waals density functional (vdW-DF). Its
accuracy is comparable to high-level quantum-chemistry
approaches [75–77]. vdW-DF goes beyond standard DFT
to include a truly nonlocal correlation Enl

c in the
exchange–correlation energy Exc,

Exc[n] = E revPBE
x [n] + ELDA

c [n] + Enl
c [n], (1)

Enl
c [n] =

1
2

∫
d3r d3r ′ n(Er)φ(Er , Er ′)n(Er ′), (2)

where n is the electron density and revPBE [78] and
LDA [79] are standard functionals. Enl

c is determined
by the kernel φ, which is a complicated function of
the densities and their gradients at Er and Er ′, first
developed by Langreth et al [25]. With the corresponding
exchange–correlation potential vnl

c (Er)= δEnl
c [n]/δn(Er) [26],

the method becomes self-consistent and permits the
calculation of atomic forces—essential for structural
optimization and molecular-dynamics simulations. Like
high-level quantum-chemical methods, vdW-DF precludes
bias through a full, self-consistent solution of the coupled
Schrödinger equations for all valence electrons. Calculations
automatically include direct and induced electrostatic effects,
charge transfer effects and effects due to the non-nuclear
centricity of the dispersion interaction as well as its deviations
from the inverse sixth power at smaller than asymptotic
separations.

vdW-DF can be implemented in standard plane-wave
electronic-structure codes exploiting an efficient Fast Fourier
transform algorithm [80]. This algorithm scales like standard
DFT, and for large systems compute times are negligibly
longer than for GGA calculations. We routinely use our
own implementation to study hydrogen-storage materials with
300–400 atoms per unit cell [81, 82]. In particular, we have
successfully used vdW-DF to study a variety of phenomena
in MOF materials, achieving remarkable agreement with
experiment [24, 43, 48, 83–90].
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Figure 1. IR absorption spectra of CO2 absorbed into Zn-MOF74
(top) and into Mg-MOF74 (bottom) at changing CO2 pressure
(1–6 Torr). (Reprinted with permission from [83]. c© 2012
American Physical Society.)

3.3. Comparison between vdW-DF simulations and
experiment

In MOF adsorption studies, there are ample opportunities for
theory and experiment to interact. It is almost straightforward
to compare vdW-DF optimized structures with diffraction
experiments [91–93]. Of more interest is the comparison
of calculated adsorption energies with measured heats of
adsorption [94–98]. As pointed out above, IR spectroscopy
can be a very powerful method to study the loading of MOFs,
but caution is necessary. From the theoretical side, while the
full calculation of IR spectra is possible [99], it is much easier
and typically sufficient to calculate the IR peak positions—this
has been done in a number of studies and shows very good
agreement with experiment [83, 85, 97]. Comparison with IR
experiments has also been made for vdW-DF calculations of
small molecule diffusion [86]. vdW-DF calculations for an
exhaustive list of elastic and transport properties of MOFs are
also compared with experiment [92, 100, 101].

Table 1. Vibrational frequencies (cm−1) of CO2 physiadsorbed in
MOF74. Data taken from [83].

System
Bending mode
(ν2)

Asym. stretch mode
(ν3)

Exp. Free CO2 667 2349
Mg-MOF74 658 2352
Zn-MOF74 658 2338

Calc. Free CO2 646.6 2288.5
Mg-MOF74 636.6 2288.0
Zn-MOF74 637.6 2280.4

4. Examples of successful combined
experimental/theoretical studies

4.1. Studying adsorption mechanisms of small molecules in
MOFs

It has been shown that MOFs with unsaturated metal centers,
such as MOF74 and HKUST-1, exhibit a fast and specific
CO2 absorption, which is a desirable property for capturing
applications [47, 102–104]. Therefore, understanding their
absorption mechanisms is critical for the rational design of
improved MOFs. In this subsection we discuss and analyze
CO2 absorption in MOF74. We will show that the vdW-DF
approach is critical in order to understand and correctly explain
the corresponding experimental results. As an example, we
review CO2 absorption in Zn-MOF74 and Mg-MOF74 and
show how the frequency of the asymmetric and stretching
modes are modified upon absorption [83].

The experimental IR absorption spectra results in figure 1
show that the unperturbed asymmetric stretch mode of CO2
(2349 cm−1) undergoes shifts of −11 cm−1 and +3 cm−1

upon adsorption on Zn-MOF74 and Mg-MOF74, respectively.
But, what causes this shift? To answer this question, ab initio
calculations were performed utilizing vdW-DF, finding three
factors contributing to this shift, i.e. (i) the change in the CO2
molecule length, (ii) the asymmetric distortion of the CO2
molecule, and (iii) the direct influence of the metal center.

In table 1, we compare the IR spectroscopy data with
results from frozen-phonon vdW-DF calculations, where the
CO2 molecule was adsorbed at the metal site of MOF74.
In particular, the frozen-phonon calculations for the bending
mode of CO2 give a change in frequency of approximately
−9 cm−1 during adsorption on either metal, in excellent
agreement with the experimental results. Furthermore, the
calculations show that the asymmetric stretch mode of the CO2
molecule exhibits red-shifts of −0.5 cm−1 and −8.1 cm−1

when adsorbed on Mg-MOF74 and Zn-MOF74, respectively,
in reasonable agreement with the changes of +3 cm−1 and
−11 cm−1 measured in experiments.

According to vdW-DF calculations [83], the CO2
molecule binds more strongly to Mg-MOF74 than to
Zn-MOF74, in agreement with experimental findings.
Furthermore, the distance between the metal center and the
CO2 molecule is smaller in Mg-MOF74 than in Zn-MOF74.
Also, the CO2 molecule experiences a larger distortion upon
adsorption in Mg-MOF74, see table 1 in [83]. Therefore, it is
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surprising that the frequency shift of the asymmetric stretching
mode (see ν3 in table 1) for CO2 in Mg-MOF74 is smaller
compared with that in Zn-MOF74, and a deeper investigation
of what causes this peculiar result is warranted. As mentioned
above, this result can be explained with the help of theory.

We will start with the change in the molecule length:
in order to analyze this effect, phonon calculations of the
free CO2 molecule were performed, where its length was
set to the value when adsorbed in the MOF, keeping the
carbon atom centered. Using this approach, frequency shifts
of −1.6 cm−1 and −3.7 cm−1 were obtained for the cases of
Mg- and Zn-MOF74, respectively. It is interesting to see that in
the case of Mg-MOF74, the molecule experiences a marginal
elongation of 0.0003 Å, while in the case of Zn-MOF74 an
elongation of 0.0009 Å takes place. That is, the molecule that
experiences the larger elongation exhibits the larger red-shift,
as suggested by common sense.

The effect corresponding to the molecule’s asymmetric
distortion was studied by placing the CO2 molecule exactly at
the same geometry as when adsorbed in the MOF, but removing
the surrounding MOF. By doing this, the only contributions to
the change in frequency come from the elongation of the CO2
molecule and the asymmetric distortion of the carbon atom.
The former has been reported in the paragraph above, so that
the latter can easily be calculated. In this way, we find the shifts
corresponding to the induced asymmetry of the CO2 molecule
to be 1.1 cm−1 and 0.7 cm−1 for Mg-MOF74 and Zn-MOF74,
respectively.

Finally, the effect of the metal center was studied by
placing the free, undistorted CO2 molecule at the metal
adsorption site with the same position and angle of the
adsorbed system. By doing this, the change in frequency
has its highest contribution coming from the oxygen–metal
interaction. Using this configuration, the results show a
frequency shift of the asymmetric stretching mode of the CO2
molecule of−5 cm−1 for the Zn-MOF74 system. On the other
hand, for Mg-MOF74 the frequency shift has a negligible value
of −0.6 cm−1. This is a striking result, since Mg and Zn
have very similar valence structure with 3s and 4s electrons
as the outermost valence states. This result shows that the
fully occupied semi-core 3d electrons in Zn have an important
effect on the interaction with the adsorbed CO2 molecules.
Similar results are found in Co- and Ni-MOF74 structures. To
shed more light on this situation, a charge-density analysis was
performed, finding a depletion of electrons around the Zn atom
upon adsorption of the CO2 molecule, while this depletion was
not present for Mg-MOF74. Thus, the depletion of charge is
an effect of the Zn d orbitals, which, in turn, also influences
the charge distribution in the adsorbed CO2 molecule. Via
this mechanism, the Zn d orbitals indirectly affect the IR
frequency shift of the adsorbed CO2 molecule—explaining
the differences between Mg-MOF74 and Zn-MOF74.

In summary, this van der Waals study of small molecule
adsorption on MOFs is driven by experimental IR data. But,
it is clear that the reasons for the observed IR frequency shifts
are not necessarily intuitive and can only be explained with
the help of detailed first-principles simulations.

4.2. Studying the chemical stability of MOFs under humid
conditions

The stability of MOFs under humid conditions [105–110]
is of great importance for the implementation of these
systems in various applications and devices. For example, the
MOF5 structure is very sensitive to water and its hydrogen
uptake properties become compromised when it is exposed to
humidity in ambient air. So, how can we design new MOFs
that keep their desired properties while being water resistant?
In the case of MOF5, Yeng et al [105] reported the synthesis of
methyl- and 2,5-dimethyl-modified versions. By introducing
methyl into the linkers, the structure becomes less reactive
to water and retains the same hydrogen uptake properties of
MOF5 up to four days after being exposed to ambient air.
While this is a specific case, resting on the specific interaction
of water and H2 with the methyl-modified linkers, it can
easily be generalized and it is again the interaction of small
molecules—in this case water—with the MOF that is the focus
of much ongoing research.

In this subsection, we review efforts to understand the
MOF–water interaction, using as an example the prototypical
metal organic framework M(bdc)(ted)0.5 (M=Cu, Zn, Ni, Co;
bdc = 1,4-benzenedicarboxylate; ted = triethylenediamine).
This MOF has shown promising properties towards the
adsorption of gases, such as H2, CO2, and CH4 [111–113].
M(bdc)(ted)0.5 exhibits thermal stability up to 282 ◦C, is
highly porous, the H2 adsorption is exceptionally high, and it
can also adsorb a large amount of hydrocarbons. This system
was first synthesized and reported by Dybtsev et al in [113]
and we will review here its water stability, as originally studied
in [43]. A characteristic building block of this particular
MOF is the incorporated ‘paddle-wheel’ building-block ted
(triethylenediamine), which acts as a linker. In the presence
of water, this paddle-wheel structure can be extracted from
the framework and replaced by water molecules, forming
M-MOF2 (we will refer to it as MOF2), as can be seen
in figure 2. Obviously, with its normal linker missing, the
M(bdc)(ted)0.5 structure loses stability and, in most cases,
undergoes an non-reversible phase transition.

Figure 3 shows the powder x-ray diffraction (XRD)
pattern of four hydrated M(bdc)(ted)0.5 systems (M = Cu,
Zn, Co and Ni) after exposure to 9.5 Torr of D2O vapor and
the corresponding activated (pristine) M(bdc)(ted)0.5 samples.
Concerning the Cu(bdc)(ted)0.5 system, the XRD pattern
confirms that the system is stable after exposure to D2O gas
up to a pressure of 6 Torr, see figure S10 in the supporting
information of [43]. However, the top left panel of figure 3
shows that all the x-ray peaks are shifted to higher angles,
except for the [001] peak, indicating that the Cu(bdc)(ted)0.5
system is partially hydrolyzed by the D2O molecules.
Even though the structure is only partially hydrolyzed, the
original Cu(bdc)(ted)0.5 structure cannot be recovered after
evacuation of water at a temperature of 150 ◦C. In contrast,
the left bottom panel of figure 3 clearly indicates that the
Zn(bdc)(ted)0.5 system transforms into MOF2 after hydration.
This transformation starts with the detachment of the ted
group and the subsequent bonding of the D2O molecules
to the Zn2+ apical sites of the paddle-wheel building units
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Figure 2. Scheme adopted for water insertion in M(bdc)(ted)0.5 (M = Zn, Ni), where the ted group has been substituted by two water
molecules. (Reprinted with permission from [43]. c© 2012 American Chemical Society.)

Figure 3. Powder x-ray patterns of activated (pristine) and hydrated M(bdc)(ted)0.5 (M = Cu, Zn, Co and Ni) after exposure to 9.5 Torr of
D2O vapor. (Reprinted with permission from [43]. c© 2012 American Chemical Society.)

through their oxygen atoms. Concerning the Ni(bdc)(ted)0.5
and Co(bdc)(ted)0.5 systems under humid conditions, the right
bottom and right upper panels of figure 3 indicate that the
Ni(bdc)(ted)0.5 maintains its structure after been exposed to
9.5 Torr of D2O vapor, while the Co(bdc)(ted)0.5 is completely
destroyed after exposure. Furthermore, the Co(bdc)(ted)0.5
structure cannot be recovered after annealing in vacuum up to
150 ◦C, see figure S13 in the supplemental material of [43].

In order to explain the previous experimental results
and give a clear explanation of how water interacts with
the M(bdc)(ted)0.5, we review computational results obtained
in [43] concerning the Ni(bdc)(ted)0.5 and Zn(bdc)(ted)0.5
systems. The energy 1E needed to extract the paddle wheel
and replace it with water molecules was calculated using the
vdW-DF formalism as

1EM(bdc)(ted)0.5 = E[M(bdc)(ted)0.5] + E[n H2O]

− E[MOF2+ n H2O] − 1/2 E[(ted)], (3)

where n is the number of water molecules in the MOF,
E[M(bdc)(ted)0.5] is the energy of the MOF with no water
molecules in it (as seen in the left panel of figure 2), E[n H2O]
is the energy of n water molecules, E[MOF2+ n H2O] is
the energy of the M(bdc)(ted)0.5 where the ‘exciting’ ted
has been replaced with n water molecules (right panel of
figure 2) and E[(ted)] is the energy of the ted. Table 2
shows the energies required to substitute the ted in the Zn
and Ni(bdc)(ted)0.5 structures by 2, 4, 6, 8 and 10 water
molecules. Note that negative 1E values indicate that the

Table 2. Computed 1EM(bdc)(ted)0.5 and 1EM-MOF2
(kJ mol−1 cell−1) as a function of the number of water molecules
per cell. Note that the basic MOF2 structure already contains two
water molecules. Data taken from [43].

H2O/cell

1EM(bdc)(ted)0.5 1EM-MOF2

Zn Ni 1 Zn Ni 1

2 43.1 85.5 42.4 — — —
4 −5.3 4.2 9.5 −53.6 −77.1 −23.5
6 −21.4 −17.1 4.3 −53.7 −68.4 −14.7
8 −31.3 −24.0 7.3 −56.1 −52.4 3.7

10 −35.0 −45.2 −10.2 −54.5 −55.3 −0.8

replacement is energetically favorable. The table shows that
Ni(bdc)(ted)0.5 is more resistant to water than Zn(bdc)(ted)0.5,
as found in the spectra in figure 3, and the hydration of the latter
is a spontaneous process. This is due to the strong H bonds
between the water molecules, which stabilizes the coordination
of the Zn metal centers. On the other hand, in the case of
Ni(bdc)(ted)0.5,1EM(bdc)(ted)0.5 becomes negative only when
the number of water molecules is six or greater.

Alternatively, one can calculate the energy 1EM-MOF2
required for hydration of the MOF2 structure with n water
molecules, using:

1EM-MOF2 = E[MOF2] + E[n H2O]

− E[MOF2+ n H2O]. (4)
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Figure 4. IR absorption spectra of water exposure in FMOF1 as a
function of pressure. Absorption spectra are referenced to
dehydrated FMOF1 in vacuum. The top panel shows exposure at
15 Torr, while the bottom part shows exposure at lower pressures
(800 mTorr–3 Torr). (Reprinted with permission from [24]. c© 2013
American Chemical Society.)

Here, E[MOF2] is the energy of the M(bdc)(ted)0.5,
where the ted has been replaced by two molecules of water;
the other terms in the equation have been previously defined,
see equation (3). The right hand side of table 2 shows that
for MOF2 the hydration of the Zn and Ni systems is a
spontaneous process with an energy gain of approximately
−55 kJ mol−1 cell−1 for higher loadings. This trend is almost
independent of the metal.

In conclusion, the computational results explain the
experimental findings in [43], indicating that the structural
stability of the system depends on the amount of water present
in the MOF. At lower loadings the system is stable, while at
higher loadings the interaction of water with the paddle wheel
leads to the irreversible decomposition of the structure.

4.3. Studying the formation of water clusters in fluorinated
MOFs

The large internal surface area of MOFs makes them ideal
for catalysis and fuel-cell applications, which have attracted a
surge of interest [10–12, 16, 114, 115]. While some progress
has been made—for example, Hurd et al [116] show intriguing
results for β-PCMOF2 (proton conducting metal organic
framework 2), capable of proton transport under anhydrous
conditions at 150 ◦C—in general, the low hydrothermal and
chemical stability of MOFs prevents their implementation
in catalytic and fuel-cell systems. In the recent past, thus,
concerted efforts have focused on increasing the hydrothermal
and chemical stability of MOFs [109, 117, 118].

A promising approach to increase the chemical and
hydrothermal stability is fluorinated MOFs (FMOFs), where
the H atoms have been replaced by F atoms [119–121]. Yang
et al report interesting results for FMOF1, showing that the
hydrogen-desorption isotherm does not follow the path of the
adsorption isotherm [119], in fact, it shows an abrupt drop in
the adsorption density at 14 bar. The authors highlight the fact

Figure 5. IR absorption spectra of H2O adsorbed in FMOF1
showing the bending modes of adsorbed water as a function of
pressure. Top part shows the IR absorption spectrum at 9 Torr.
(Reprinted with permission from [24]. c© 2013 American Chemical
Society.)

that this behavior would allow FMOF1 to adsorb H2 at high
pressures and store it at low pressures.

In general, the walls of FMOF systems are hydrophobic,
leading to an interesting side effect: the weak interaction of
water molecules with the FMOF enhances the creation of water
clusters inside its pores. In this subsection, we review the
formation and behavior of water clusters inside FMOF1, as
reported in [24]. As in previous sections, an understanding of
the weak molecular interactions inside this system was gained
by a combination of vdW-DF calculations and IR absorption
spectra of water-exposed FMOF1 as a function of pressure.
Note that the interaction between water molecules has a
significant van der Waals component, which is well captured
with vdW-DF [122], while the electrostatic interaction is
suppressed by the wall hydrophobicity of FMOF1.

Experimental isotherm measurements of FMOF1 show
that the adsorption of water is negligible compared to the water
adsorption in other systems [121]. Furthermore, at low water
pressures (800 mTorr–3 Torr), the IR adsorption measurements
of H2O adsorbed on FMOF1 show two peaks corresponding to
red- (−13 cm−1) and blue-shifts (+9 cm−1) of the unperturbed
scissor vibration mode (1621 cm−1) of the water molecule, as
can be seen in figure 4. On the other hand, as the pressure is
increased to 9 Torr, new peaks associated with scissor vibration
modes appear at 1639 and 1676 cm−1, as can be seen in the
top panel of figure 5.

In order to elucidate the appearance and nature of
these peaks, vdW-DF vibration calculations were performed
for various water clusters, i.e. the water dimer, trimer,
tetramer, pentamer and ice; the results are shown in figure 6.
Figure 6(a) shows the calculated modes convolved with
Gaussian functions of 20 cm−1 bandwidth, while panel (b)
shows single-frequency values represented by peaks of 1 cm−1

width. As expected, from the figure it can be seen that the
bigger the water cluster, the greater the number of scissor
modes. It is also important to note that for pressures under
3 Torr, the scissor vibrational modes in figure 4 span from
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Figure 6. (a) Gaussian convolution (with bandwidth of 20 cm−1) of
bending mode frequencies for various cluster sizes.
(b) Single-frequency values represented by peaks of 1 cm−1 width,
as reported by previous vdW-DF calculations on gas-phase water
clusters [122]. (Reprinted with permission from [24]. c© 2013
American Chemical Society.)

1600 to 1650 cm−1. This matches the theoretical frequency
windows of both the tetramer and pentamer, as seen in the
top panel of figure 6. It follows that the water clusters formed
inside FMOF1 under low pressures (<3 Torr) are comprised
of no more than five water molecules. This conclusion is also
supported by the water adsorption energies on the FMOF1,
see table 2 in [24]. Note that, in principle, up to 61 water
molecules can be accommodated inside the pores of FMOF1.
On the other hand, the experimentally observed peak located at
1676 cm−1 in figure 5 can be associated with hydrogen-bonded
water molecules or water clusters larger than five water
molecules—see the orange line in the top panel of figure 6.
It is important to note that this peak is only visible at high
pressures.

In summary, while the IR spectroscopy data of water-
exposed FMOF1 showed the appearance of new peaks, it
was only with the help of vdW-DF calculations that a clear
assignment to particular water clusters could be made. Note
that this finding is likely to have a tremendous impact on
atmospheric sciences, which seek to study the existence and
properties of such clusters. In the normal atmosphere, water
cluster concentration decays exponentially with the aggregate
size, making clusters larger than the trimer often difficult to
observe. FMOF1 solves this problem and provides a simple
environment to create and confine even larger clusters.

4.4. Studying small molecule diffusion in MOFs

MOFs have attracted a lot of attention due their promising
properties concerning the storage of hydrogen and capture of
CO2 [9], among others. However, for the effectiveness of all
such applications, it is necessary to get guest molecules deep
into the bulk of the MOF, or vice versa, have them diffuse
out. As such, the diffusivity of the guest molecule through
the porous material plays a major role in these processes and
is critical for the understanding and rational design of new

MOFs. The topic of small molecule diffusion in MOFs has
thus been the target of many theoretical studies [123–129].
For example, in [128], Haldoupis et al identified key elements
in the MOF’s pore structure and via molecular dynamic
simulations they were able to predict the Henry constant
and the activation energy for several guest molecules. In
particular, the authors were able to identify several materials
with promising properties towards the separation of gases, such
as H2, CO2, and CH4. However, in their study, the authors
assume that the MOFs are rigid structures, which can be a
serious limitation, as we know that some MOFs experience
a significant change in their structure upon adsorption of the
guest molecules or other external stimuli due to their high
flexibility.

In this subsection we review a combined in situ IR/vdW-
DF study of small molecule diffusion in Mg-MOF74, as
described in [87]. MOF74 was chosen for this study due to
its unsaturated metal centers, which makes it highly reactive
towards the adsorption of small molecules. Furthermore,
Mg-MOF74 has shown promising properties towards the
adsorption of CO2 compared to other MOFs.

We start by showing results concerning the adsorption
energies of H2, CO2, and H2O in the Mg-MOF74 structure,
see table 3. This table shows that for low to moderate loadings
the interaction between adsorbate molecules is negligible,
except for H2O adsorption, where the repulsion between
the H atoms of the water molecules slightly debilitates the
H2O binding to the MOF. The adsorption energies for the
adsorption of H2 and CO2, obtained using the vdW-DF
approach, are in excellent agreement with the experimental
values of−0.11± 0.003 eV [98] and−0.49± 0.010 eV [104],
respectively. Although not the focus of that particular study,
table 3 also reveals a common problem of many MOFs: the
adsorption energy of water (due to its large dipole moment)
is typically significantly higher compared to, for example, H2
and CO2. Thus, the presence of even small traces of water is
a serious impediment to possible applications and devices, as
anticipated in the previous section. Details about this problem
are discussed in [90]. In addition to adsorption energies,
calculations of the vibrational spectra show a frequency change
after adsorption of 1νH2 =−30 cm−1, 1νCO2 =−13 cm−1

and 1νH2O = −103 cm−1, in remarkable agreement with
the IR spectroscopy measurements of 1νH2 = −36 cm−1,
1νCO2 =−8 cm−1 and1νH2O =−99 cm−1. Experimentally,
there is also a small difference in the frequency change
between low and high loading, resulting in red-shifts of −3
and −15 cm−1 for the asymmetric stretch modes of CO2
and H2O respectively (see supplemental material of [87]).
Computationally, we find 1νCO2 =−1 cm−1 and 1νH2O =

−18 cm−1, again in excellent agreement with experiment.
The diffusion of small molecules (H2, CO2 and

H2O) through the MOF is a complex process. An
appropriate description of such processes typically requires
computationally expensive first-principles molecular dynamic
simulations. However, here we were able to avoid the use of
molecular dynamics by finding four different diffusion paths
that capture the important molecular transport mechanisms
responsible for the macroscopic diffusion of H2, CO2 and
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Table 3. Adsorption energies 1E of molecules in Mg-MOF74 in
eV. Two different loadings are considered, i.e. one molecule per unit
cell (low loading) and six molecules per unit cell (high loading). In
addition, adsorption energies corrected for the zero-point energy
(1EZPE) and thermal contribution (1H298 at 298 K) are given in
eV. Data taken from [87].

Molecule Loading 1E 1EZPE H298

H2 1 −0.15 −0.15 −0.15
6 −0.16 −0.16 −0.16

CO2 1 −0.50 −0.49 −0.50
6 −0.50 −0.49 −0.50

H2O 1 −0.79 −0.76 −0.76
6 −0.76 −0.73 −0.73

H2O in the MOF structure. These four paths are: (a) the guest
molecule, adsorbed on one metal center, travels circularly from
one metal center to the next. Note that this mechanism is
not responsible for molecular transport into the MOF, but
nevertheless is an important process for redistributing the
molecular load. (b) The guest molecule, adsorbed on the metal
center, diffuses along the c-axis to the next metal center. (c)
The guest molecule travels through the center of the MOF’s
channel, where all the metal centers are occupied by the same
type of guest molecules. (d) The guest molecule, adsorbed
on one of the metal centers, travels along the c-axis through
a barrier made by adsorbed molecules and is adsorbed at
the equivalent metal center two unit cells further down. See
figure 7 for a graphical representation of these four diffusion
paths. For these paths, diffusion barriers were then calculated
utilizing vdW-DF combined with the climbing-image nudged
elastic band (NEB) approach.

The energy barriers of the four diffusion paths are plotted
in figure 8. Note that diffusion barriers corrected for the
zero-point energy were also calculated, but are not reproduced
here. From the figure it can be seen that water has the highest
energy barrier for diffusion. Again, the presence of water inside
the MOF is a serious issue, as the barrier for it to diffuse out is
rather large. As expected, the energy barriers are comparable to
the adsorption energies. In panel (a), it can be seen that a local
minimum is located at 58% of the path for CO2 diffusion. This
local minimum has its origins in the presence of a secondary
adsorption site in the MOF. Due to its low depth (5 meV), the
secondary adsorption site is occupied only at high loadings.
This secondary adsorption site for the CO2 molecule was first
reported by Queen et al in [130], where the authors conducted
neutron powder diffraction experiments on the Mg-MOF74 as
a function of the CO2 loading. Paths (b)–(d) aim to simulate
the diffusion of the guest molecule into the MOF. Note that the
diffusion barriers in path (c) are ten times lower than the ones
obtained in paths (a)–(d). This indicates that the interaction
between the guest molecules in the middle of the channel and
the ones adsorbed at the metals sites is small. Furthermore, it is
important to highlight that the diffusion energy barrier of CO2
in figure 8(c), i.e. 0.04 eV, becomes 0.03 eV when corrected
for the zero-point energy. This value is in excellent agreement
with the 0.03 eV energy barrier measured experimentally by
Bao et al in [131].

Figure 7. Graphical representation of the diffusion mechanisms
considered in this study, shown for the case of CO2. (a) and (a′) are
views directly along the c-axis of the hexagonal Mg-MOF74 cell,
where one (low loading) and six CO2 (high loading) are adsorbed.
(b)–(d) are views perpendicular to the c-axis. In panel (b) the guest
molecule, adsorbed on a metal center, diffuses along the c-axis to
the next metal center. In panel (c) the guest molecule travels along
the center of the MOF channel, while all the metal centers are
occupied by the same type of guest molecule. In panel (d) the guest
molecule, adsorbed on one of the metal centers, travels along the
c-axis through a barrier made of other adsorbed molecules and is
adsorbed again at the equivalent metal center two unit cells further
down. Dashed lines indicate the diffusion paths. (Reprinted with
permission from [87]. c© 2012 American Physical Society.)

In addition to vdW-DF calculations, in situ IR
time-resolved spectroscopy measurements of the diffusion of
CO2 and H2O in Mg-MOF74 were performed. When the
experiments were first performed, the results were difficult to
understand. In the case of CO2, at first we observed a red-shift
in the vibration frequency (asymmetric mode) of the guest
molecules. As time passes, the IR spectrum measurements
show a second shift (blue-shift) in the vibration frequencies
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Figure 8. Diffusion profiles (in eV) for the diffusion processes of
H2, CO2, and H2O in Mg-MOF74 according to the mechanisms in
figure 7. (Reprinted with permission from [87]. c© 2012 American
Physical Society.)

of the guest molecules, leading to the original IR spectrum.
The analogous behavior is observed for the corresponding
experiment with H2O. With the help of theory, we were able to
construct a model that explains these effects. At first, molecules
entering the MOF mostly adsorb in the pores close to the
surface and ‘clog’ those. This causes the first experimentally
observed red-shift. Those pores become highly loaded, which
we were able to deduce from the calculated difference in
frequency shift from the low- and high-loading situations.
Then, after some time, molecules start to diffuse deeper
into the MOF using mechanism (c), diffusing from pores
with a high concentration of guest molecules to pores with
lower concentration. This results in the second shift observed,
i.e. blue-shifting back to the original spectrum.

To test our model, we compare the experimental timescale
for the CO2 and H2O cases. The experiments show that it takes
approximately two hours for the H2O molecules and 22 min
for the CO2 molecules to go from the high-loading regime to
the low-loading regime. The ratio between these two times is
5.45. On the other hand, having calculated the corresponding
diffusion barriers (and calculating the pre-exponential factor in
the Arrhenius equation with the help of transition-state theory),
we can compute the same ratio and find based purely on our
ab initio calculations a value of 5.43, validating our theoretical
accuracy and transport model.

In summary, as in the previous subsections, only
the combination of experiment and theory was able to
present a complete picture of small molecule diffusion in

MOF74. The theoretical atomistic model for the molecular
transport explains experimental IR macroscopic evidence. The
simulations also clarify the two-state mechanism, observed
experimentally, which controls the macroscopic diffusion of
these molecules in MOF74.

5. Summary and outlook

In this work, we have shown several examples of how the syn-
ergy of IR and Raman spectroscopy techniques, together with
ab initio calculations at the DFT level utilizing vdW-DF, allow
us to give a complete description of the van der Waals binding
and interaction between guest molecules and the MOF. While
originally many studies of MOFs focused on the adsorption of
H2 and CO2, at the moment we see a vast expansion of this
field, including many other molecules of interest, such as SO2
and NO2 [89, 132–135]. Interesting effects are also being stud-
ied, such as a pressure-dependent gate opening of MOFs [48,
136–138] and the response of MOFs to a variety of external
stimuli. Due to the versatile building-block nature of MOFs, an
almost innumerable number of MOFs might exist. However,
more fundamental research is necessary to understand their
properties and tailor them according to our needs. Nonetheless,
at this point we have probably only seen a glimpse of their
applicability for future applications and devices.
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[61] Šponer J, Riley K E and Hobza P 2008 Nature and magnitude
of aromatic stacking of nucleic acid bases Phys. Chem.
Chem. Phys. 10 2595–610
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