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4.1  �Introduction
The design of multivalent batteries, specifically Mg batteries, has proven to 
be challenging for a number of reasons: (i) a lack of high voltage cathode 
materials with good mobility of Mg ions;1–5 (ii) a lack of electrolytes that are 
compatible with the Mg metal anode and high-voltage cathode materials;6–8 
(iii) poor understanding of metal plating/stripping at the anode;6,9,10 and (iv) 
a lack of standard protocols to perform experiments.5

Theoretical calculations, which can be thought of as controlled experi-
ments, are ideal to tackle some of the aforementioned issues, as they limit 
the number of variables affecting the observables. This chapter will focus 
on the application of theoretical tools, especially using density functional 
theory (DFT), to identify Mg cathodes with good intrinsic ionic mobility and 
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Chapter 480

high voltage. We will begin by discussing the thermodynamic and kinetic 
principles that are used in conjunction with DFT to accurately predict: (i) 
the intercalation (and conversion) voltages of multivalent electrodes, (ii) the 
migration barrier of Mg2+ ions in host materials, and (iii) the identification of 
good electrode coatings. We conclude by providing a number of examples of 
successful applications to topical materials in the Mg chemical space.

4.1.1  �Thermodynamics of Multivalent Electrodes
Here, we explore the thermodynamic quantities accessible using DFT in a 
typical intercalating battery system. We define the Nernst equation for calcu-
lating voltages and the subsequent extensions of it to solvent co-intercalating 
systems, conversion reactions, and electrolyte stabilities.

A reversible reaction of Mg intercalation, where the source of intercalant 
atoms is from a Mg-metal anode, within a MOz cathode host (M = redox-active 
transition metal) is written as:
  

	 MOz + xMg → MgxMOz	 (4.1)
  

The intercalation reaction of eqn (4.1) is thermodynamically favoured, if 
its Gibbs energy, ΔG, is negative (see below).
  

	 ΔG ≡ GMgx  MOz
 − GMOz

 − xGMg ≤ 0	 (4.2)
  

Subsequently, the Nernst equation of eqn (4.3) can be used to define a 
change in the electrochemical potential (ΔV) of any reaction, given its Gibbs 
energy change (ΔG), the number of electrons transferred (n) and the Faraday 
constant (F).
  

	
Δ

Δ ,
G

V
nF

  	 (4.3)
  

Combining eqn (4.2) and (4.3), we define the average equilibrium voltage 
for intercalating x moles of Mg into the MOz host as:
  

	
Mg MO MO MgΔ

2
x z z

G G xG
V

xF

 
  	 (4.4)

  

Note that each Mg atom corresponds to a transfer of 2 electrons, which 
explains the factor of 2 in the denominator of eqn (4.4). Additionally, eqn 
(4.4) is referenced to as the Gibbs energy of Mg metal (GMg), which sets a 
natural reference to ΔV as the standard reduction potential (SRP) of Mg 
metal, which is −2.37 V vs. the standard hydrogen electrode (SHE). Thus, ΔV 
in eqn (4.4) is always defined with respect to the SRP of Mg2+/Mg. Cathode 
frameworks that thermodynamically favour Mg intercalation will exhibit a 
positive ΔV in eqn (4.4). In other words, the anode–(electrolyte) –cathode 
combination will pump electrical energy into the external circuit, or undergo 
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81Theoretical Modelling of Multivalent Ions in Inorganic Hosts

“discharge”, during Mg intercalation, if ΔV is positive. Subsequently, the 
battery will undergo “charge” or will absorb energy from an external power 
source (equivalent to ΔV), while Mg ions are de-intercalated. In battery litera-
ture, MgxMOz and MOz are often to as discharged and charged compositions, 
respectively. Further, the difference between the Gibbs energies of the inter-
calated and empty cathode in eqn (4.4), i.e. GMgxMOz

 − GMOz
, is the change in 

the chemical potential of Mg (µMg) within the cathode host, across the Mgx-
MOz and MOz concentrations.11 Hence, eqn (4.4) can be generalized to define 
the equilibrium voltage (V(x) vs. Mg2+/Mg) of a cathode host at a given Mg 
concentration (x), using eqn (4.5):
  

	  
 Mg Mg

Mg MO Mg anode

2
x z

x
V x

F

  
  	 (4.5)

  

First-principles calculations, such as those based on DFT,12,13 are used to 
calculate the average intercalation voltage (ΔV from eqn (4.4)), for intercalat-
ing compositions, x and x + Δx, while approximating the Gibbs energies of 
the cathode and the anode to the internal energies at 0 K (G ≈ E), which are 
directly obtained from total energy calculations using DFT, resulting in eqn 
(4.6).
  

	 ΔMg MO Mg MO MgΔ
Δ

2Δ
x x z x z

E E xE
V

xF


 
  	 (4.6)

  

Eqn (4.6) includes important approximations, which are often justified, but 
do play a role while directly comparing DFT calculated with an experimental 
ΔV, where the experiment is typically done at 298 K and 1 atm. For example, 
the contributions arising from the volume change as intercalation occurs 
within the cathode (or an intercalation anode) host, i.e. pΔV, are typically 
neglected since such contributions are in the order of 10−5 eV for most mate-
rials, whereas the change in internal energies are in the order of a few (1–10) 
eV.11 Similarly, the changes in entropy within the cathode host, i.e. TΔS ≈ 0.01 
− 0.1 eV, are also often neglected. However, entropy changes can influence 
the phase behaviour of a given cathode host during an intercalation reaction, 
as discussed in Section 4.1.2. In particular, entropy contributions dominate 
in determining the ground-state (or equilibrium) crystal structure (or atomic 
configuration) at higher temperatures. However, the computational cost of 
calculations required to capture entropy contributions are significant, with 
most theoretical studies using the calculated ΔV at 0 K to screen for promis-
ing cathodes.

4.1.1.1 � Ground State Hull, Metastability and Average Voltages
Reversible intercalation reactions are typically “topotactic” processes, where 
the structural framework at the intercalated and empty compositions remain 
identical, with the intercalant occupying well-defined vacant sites within the 
cathode. For example, when Mg reversibly (de-)intercalates into a MO2 host, 
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Chapter 482

the cathode structure remains identical to that of either the MgMO2 (fully 
intercalated) or MO2 (fully empty) structures, while Mg is removed or added. 
The framework that the cathode adopts during topotactic intercalation 
depends on the structure with which the (de-)intercalation process is begun, 
i.e. a fully intercalated (empty) framework is adopted if MgMO2 (MO2) is the 
starting composition. Thus, the calculated intercalation voltage is heavily 
dependent on the cathode structure (or polymorph) of (de-)intercalation. 
Given eqn (4.6), the lower (higher) the energy of the intercalated (empty) 
cathode host, the higher the average voltage.

Since polymorphism plays an important role in determining (de-)interca-
lation voltages, it is crucial to determine the ground state structures as a 
function of various intercalant compositions within the cathode framework. 
Accurate (de-)intercalation voltages (eqn (4.6)) can be estimated from DFT 
calculations if accurate 0 K phase diagrams, also referred to as “ground state 
hulls”, can be determined, as schematically illustrated for a hypothetical Mg-
intercalation system in Figure 4.1a,b. The term ground state hull comes from 

Figure 4.1  ��(a) The energy landscape in a hypothetical Mg intercalation material, 
where the energies are referenced to the intercalated composition, 
MgMO2. (b) The ground state hull of the Mg intercalation system, with 
the energies referenced to both the intercalated and empty (MO2) com-
positions. The red lines, red circles, and the green diamonds are the 
convex (or ground state) hull at 0 K, the ground states and metastable 
states, respectively. (c) The average voltage curve plotted as a function 
of Mg concentration (x) for Mg (de-)intercalation in MgxMO2, obtained 
from the convex hull of panels (a) and (b), at 0 K. (d) Average voltage 
curve at a higher temperature including entropic contributions.
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83Theoretical Modelling of Multivalent Ions in Inorganic Hosts

the fact that 0 K phase diagrams resemble convex hulls (see Figure 4.1b), 
since the ground state structure, at a given composition, always minimizes 
the Gibbs energy at that composition. Thus, given a set of compositions, 
structures, and Gibbs energies, the equilibrium phase diagram is mathe-
matically obtained through a procedure of convex minimization. Once the 
ground state hull is obtained, eqn (4.6) is applied to calculate average volt-
ages in a range of compositions, as shown in Figure 4.1c.

In Figure 4.1a, the internal energies are referenced with respect to the fully 
intercalated composition, i.e. EMgMO2, and the “uphill” nature of the energy 
landscape indicates the energy required (or the voltage to be applied) to de-
intercalate Mg2+ ions from the MgMO2 framework. For example, an uphill 
energy difference of ∼6 eV between MO2 and MgMO2 signifies an average 
voltage of ∼3 V vs. Mg (see eqn (4.6)) that will be required to charge MgMO2 
completely to MO2. Visualizing ground state hulls for intercalating compo-
sitions is more intuitive if the energies of intermediate compositions, i.e. 0 
< x < 1 for x in MgxMO2, are referenced to both the discharged (EMgMO2) and 
charged (EMO2) compositions, as shown in Figure 4.1b. Such a representation 
also allows an intuitive understanding of the metastability of various con-
figurations, shown as the green diamonds in Figure 4.1b, where the meta-
stability of each structure is quantified by the energy above the hull (Ehull). 
Mathematically, the Ehull at a given composition is defined as the energy 
released upon decomposition into the thermodynamic ground state, i.e. the 
distance to the ground state hull. For example, the energy of the metastable 
configuration at x = 0.5 in Figure 4.1b is ∼−0.25 eV/MO2, while the energy of 
the ground state configuration at the same composition is ∼−0.75 eV/MO2. 
Hence, the Ehull for the aforementioned configuration is ∼0.5 eV/MO2. Thus, 
Ehull ≥ 0, with ground state configurations exhibiting Ehull = 0. Although meta-
stable configurations at a given temperature should not exist, entropic or 
kinetic contributions can stabilize such configurations.

For the MgxMO2 system shown in Figure 4.1, there are three thermodynam-
ically stable configurations at xMg = 0.25, 0.5, and 0.75, as illustrated by the 
red circles in panels a and b. Since the Mg concentration is the only changing 
variable in the MgxMO2 system, it can be treated as a (pseudo-)binary system. 
Note that the Gibbs phase rule in binary systems (at a given T,p) restricts the 
number of independent variables, which includes µMg, to 1 in a single-phase 
(or ground state) region (red circles in Figure 4.1b), while there are no inde-
pendent variables in a two-phase region (red lines in Figure 4.1b). Thus, µMg, 
which is related to the average voltages via eqn (4.5), either exhibits a contin-
uous range at ground state configurations (xMg = 0.25, 0.5, and 0.75) or a sin-
gle value in two phase regions (0.75 < x < 1, 0.5 < x < 0.75, 0.25 < x < 0.5, and 0 
< x < 0.25). Consequently, the voltage profile in Figure 4.1c exhibits a “jump” 
across single-phase regions and a “plateau” across two-phase regions. Note 
that the voltage illustrations in Figure 4.1c are strictly applicable to 0 K, or for 
single-phases which do not exhibit any composition ranges.

Typically, by including entropy contributions, such as configurational, 
vibrational, etc., (see Section 4.1.2) in intercalation solids extends the 
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Chapter 484

composition range over which a given phase is stable. For example, the Mg-
vacancy configuration that forms the ground state at xMg = 0.5 in Figure 4.1b 
is stable only at x = 0.5 at 0 K. However, at a higher temperature, the Mg0.5MO2 
ground state might be stable over a composition range around xMg = 0.5, say 
0.45 ≤ x ≤ 0.55. Consequently, the voltage profiles of Mg (de-)intercalation cal-
culated at 0 K (Figure 4.1c) will change at higher temperatures (Figure 4.1d). 
While the voltage jumps are discrete at 0 K and will happen across distinct 
ground state compositions, the jumps are continuous and will occur across 
the range of stable compositions for each stable phase at higher tempera-
tures. Thus, voltage profiles at higher temperatures will appear “smeared” 
compared to 0 K, with regions of smoothly sloped voltage curves indicating 
a “solid solution” behaviour.

4.1.1.2 � Capturing Entropy Contributions and the Method of 
Cluster Expansion

Entropy contributions, including vibrational, configurational, magnetic, 
electronic, etc., which are ignored in eqn (4.6), are important in determining 
the overall phase behaviour and the resultant voltage profiles. More impor-
tantly, entropy differences among solid phases determine which phase is sta-
ble at a given temperature. For example, consider a case where two metallic 
phases A and B in a given system exhibit relatively high but identical amounts 
of electronic entropy (i.e. low G). However, A will be preferentially stabilized 
at higher temperatures if A exhibits a marginally higher vibrational entropy 
than B, i.e. SA > SB. Among entropy contributions, vibrational and configu-
rational are important since they can be appreciably different among solid 
phases, and can selectively stabilize a specific phase at higher temperatures. 
Capturing either vibrational or configurational entropy requires additional 
DFT calculations, requiring both significant computational and human time 
to obtain accurate estimates.

Vibrational entropy in solids can be estimated within the framework of 
phonons, i.e. by combining principles of statistical mechanics with pho-
non dynamics. In terms of DFT calculations, the phonon density of states 
(Figure 4.2a displays the density of states for a hypothetical cathode) and 
the phonon band structure of solids are calculated by obtaining the ener-
gies and forces corresponding to different symmetrically-distinct atomic 
displacements within a supercell of the solid. Subsequently, by calculating 
the force constants (weighed by the atomic masses) that correspond to var-
ious atomic displacements, the phonon properties and the resultant vibra-
tional specific heat (Cv), vibrational entropy (S) and the vibrational Gibbs 
energies (G, plotted in Figure 4.2b) are estimated.14–16 The contribution 
of phonons is almost insignificant to differences in the vibrational Gibbs 
energy between most solid phases at low temperatures,17 i.e. 0 < T < 300 K, 
justifying why DFT estimates of average voltages do not include phonon 
contributions. Note that the vibrational thermodynamic properties have to 

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
9/

14
/2

01
9 

4:
19

:1
2 

PM
. 

Pu
bl

is
he

d 
on

 1
3 

Se
pt

em
be

r 
20

19
 o

n 
ht

tp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
17

88
01

64
07

-0
00

79
View Online

https://doi.org/10.1039/9781788016407-00079


85Theoretical Modelling of Multivalent Ions in Inorganic Hosts

be added to other entropy contributions to obtain overall thermodynamic 
quantities. In particular, the vibrational Gibbs energy has to be added to 
the internal energy (E), pressure–volume contributions (pΔV), configura-
tional free energy (Gconfig), etc. to obtain the overall Gibbs energy of the 
solid phase.

Configurational entropy is important since the intercalant ions (and cor-
responding intercalant vacancies) can adopt various configurations within 
the cathode framework during (de-)intercalation, where several intercalant–
vacancy configurations tend to be metastable at 0 K. A pathway to include 
the configurational entropy in solids is to use a sampling technique over 
an ensemble of microstates, such as Monte Carlo simulations to evaluate 
the energies of several possible configurations within the cathode, with the 
assumption that the cathode system is ergodic. Subsequently, we can use 
principles of statistical mechanics to obtain ensemble-averaged macroscopic 
quantities, such as the configurational Gibbs energy. However, performing 
Monte Carlo simulations on a large set of possible configurations requires 

Figure 4.2  ��(a) Phonon density of states of a cathode material, and (b) comput-
able thermodynamic properties, including the vibrational specific heat 
(blue curve), vibrational entropy (red), and vibrational Gibbs energy 
(green). (c) Schematic of the Ising model used to parameterize energies 
of a given configuration of Mg-ions (blue circles) and vacancies (white 
circles). Spin values of +1 (−1) are assigned to Mg-ions (vacancies). The 
energy of each configuration is decomposed to interactions of different 
clusters, such as pairs, triplets, quadruplets, etc.
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the rapid evaluation of the energies of various configurations to ensure that 
the process is computationally tractable. Hence, the energy of different con-
figurations within the intercalant systems can be parameterized by a general-
ized Ising model, often referred to as a “cluster expansion” (CE),18,19 which in 
turn enables computationally feasible Monte Carlo simulations. Apart from 
energies, CE can be used to parameterize any configuration-dependent prop-
erties, such as forces, stresses, etc.20

A schematic of the Ising model is provided in Figure 4.2c, where a given 
configuration (σ) of intercalant atoms (blue circles) and vacancies (white cir-
cles) is mapped to an idealized cathode lattice, i.e. the energy of the config-
uration is coarse-grained over any microscopic atomic displacements. Each 
site is assigned a spin value, namely, +1 and −1 for the intercalant ion and the 
vacancy (centre panel in Figure 4.2c). Subsequently, the energy (or another 
property of interest) of the configuration (E(σ)), as evaluated using DFT, is 
decomposed into contributions from various clusters, such as pairs, triplets, 
quadruplets, etc. Thus, the CE is written as a summation of the interactions 
of symmetrically distinct clusters (α), as in eqn (4.7).
  

	   .i
i

E m V 
 

  


	 (4.7)

  

E(σ) in eqn (4.7) can be represented exactly if the summation over α is 
extended to an infinite number of clusters. In practice, the summation is 
truncated to a few clusters, with their corresponding effective cluster inter-
actions (ECIs, Vα in eqn (4.7)) determined by suitably fitting the energies of 
multiple configurations (E(σ1), E(σ2), etc.). mα is the multiplicity of a given 
cluster within the structure. σi is the occupation variable (±1) of each site 
within a cluster, which in turn is averaged over all clusters β that are symmet-
rically equivalent to α. For example, a pair term (β1) containing a Mg2+ and a 
vacancy will have a value 1 1 1i

i 

     


, while another pair (β2) contain-

ing only Mg2+ ions will have a value of +1. If β1 and β2 are symmetrically equiv-

alent and form a subset of α, then 
1 1

0
2i

i 

  
 



, with mα being 2 in this 

case. Finally, a CE fit to several possible configurations to obtain a reliable set 
of Vα can be used in conjunction with Monte Carlo simulations to obtain the 
configurational component of the Gibbs energy.

Note that configurational entropy contributions will not affect the overall 
average voltage normally (i.e. between MO2 and MgMO2, dashed black lines 
in Figure 4.1c,d), since the MO2 and MgMO2 ground states will not exhibit 
multiple Mg-vacancy configurations and will not exhibit a configurational 
entropy (there are exceptions, where MgMO2 exhibits multiple possible con-
figurations). However, significant vibrational entropy can change the Gibbs 
energies of both MO2 and MgMO2 and as a result, change the overall average 
voltage.
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87Theoretical Modelling of Multivalent Ions in Inorganic Hosts

4.1.1.3 � Conversion vs. Intercalation
When a MO2 (or equivalently M2O4) cathode is reduced by Mg2+, i.e. the cath-
ode undergoes discharge, the host can either undergo a reversible interca-
lation that results in the formation of MgM2O4 or an irreversible conversion 
that results in the formation of decomposition products. In general, conver-
sion reactions are driven by the thermodynamic driving force to form binary 
compounds, such as MgO and M2O3, MO, etc. Conversion reactions are espe-
cially exacerbated within Mg-based systems since Mg exhibits a large driving 
force to form MgO, as quantified by the MgO formation voltage of ∼3.1 V 
vs. Mg. Furthermore, MgO formation stops any further electrochemical reac-
tions due to its high stability and poor Mg2+ mobility.5 Thus, intercalation 
reactions involving Mg2+ always have to compete against conversion reac-
tions during discharge.

To quantify the ability of a cathode host to resist conversion reactions, a 
thermodynamic framework can be built upon the calculated ground state 
hull of Figure 4.3 (see Section 4.1.1).21 Using DFT, one can calculate the energy 
(G ≈ E) of multiple polymorphs of charged (M2O4) and discharged (MgM2O4) 
compositions and subsequently identify the lowest energy polymorphs in 
each scenario. For example, the lowest energy charged (discharged) poly-
morph in Figure 4.3 is labelled α (λ). The lowest energy polymorphs are the 
most relevant for calculating intercalation voltages as they exhibit the high-
est likelihood to be synthesized in experiments. Since intercalation reac-
tions are ideally topotactic, we can define intercalation voltages for both the 
lowest energy charged and discharged polymorphs, labelled as V int

(charged) and  
V int

(discharged) (green arrows in Figure 4.3). Given the relationship of voltages to 
energies via eqn (4.6), V int

(discharged) is always higher than (or at least equal to) 
V int

(charged).

Figure 4.3  ��Thermodynamic framework to evaluate intercalation and conversion 
reactions for Mg reduction in typical cathode compositions, M2O4 (M 
= 3d transition metal). The lowest energy charged (empty) and dis-
charged (intercalated) polymorphs are the important structures to eval-
uate topotactic intercalation and possible conversion voltages.
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Similar to intercalation reactions starting with α and λ polymorphs, we can 
calculate the voltages for conversion reactions (red arrows in Figure 4.3) that 
lead to decomposition products, with different structures and compositions 
compared to either M2O4 or MgM2O4. The precise decomposition products 
that can form from a potential conversion reaction can be identified based 
on the ground state hull of the entire Mg–M–O phase space. For example, Mg 
reduction of M2O4 can lead to MgO and M2O3 during a conversion reaction, if 
they are the thermodynamically stable oxides that exist in the MgxM2O4 (0 ≤ 
x ≤ 1) region of the Mg–M–O ternary phase diagram.

Based on the calculated intercalation and conversion voltages for the low-
est energy polymorphs, we can identify which reaction is thermodynamically 
favoured. Since we are considering scenarios of Mg reduction or discharge 
into a M2O4 cathode host, the reaction exhibiting the higher voltage vs. Mg 
will be favoured. For example, if V int

(discharged) > V conv
(discharged), then the intercalation 

process is favoured and will likely occur. Similarly, if V conv
(charged) > V int

(charged), the 
conversion reaction will likely occur. Notably, a given cathode composition 
(M2O4) can thermodynamically favour the intercalation process with a cer-
tain polymorph (say λ), while favouring the conversion reaction with another 
(α). Nevertheless, the framework displayed in Figure 4.3 is strictly thermody-
namic ignoring any kinetic factors that may influence a given intercalation 
(or conversion) reaction.

4.1.1.4 � Solvent Co-intercalation
Since poor Mg2+ mobility within bulk oxide frameworks is a major challenge 
in developing reversible Mg intercalation batteries, intercalated solvent mol-
ecules that can electrostatically “shield” the intercalating Mg2+ and increase 
the bulk Mg mobility may improve the performance of a cathode. Several 
experimental studies have demonstrated superior cycling performance with 
layered cathodes (e.g. xerogel–V2O5) that contain or that co-intercalate solvat-
ing water molecules alongside Mg2+-ions. However, changes in the water (or 
an equivalent solvent) concentration within the cathode structure and the 
electrolyte can have a significant impact on the voltages measured, phase 
behaviour of the cathode, and the overall cycling performance. It is import-
ant to quantify the impact of solvent co-intercalation on measured voltages in 
cathode materials that can accommodate solvent molecules, which requires 
generalizing the voltage expressions of eqn (4.4) and (4.6).

Consider the process of Mg–H2O co-intercalation within the xerogel–V2O5 
cathode, which follows eqn (4.8).22
  

	 Mgx1V2O5·n1H2O + (x2 − x1)Mg + (n2 − n1)H2O → Mgx2V2O5·n2H2O	 (4.8)
  

The voltage for the co-intercalation process can be written, similar to eqn 
(4.6), as
  

	
 

 
Φ Φ

2 5 2 2 2 5 1 22 1Mg V O H O Mg V O H O 2 1 Mg

2 1

Δ
2

x xn n x x G
V

x x F
   

 


	 (4.9)
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89Theoretical Modelling of Multivalent Ions in Inorganic Hosts

Φ in eqn (4.9) is the grand-potential of the cathode framework, which 
accounts for the chemical potential of the solvent molecule that undergoes 
intercalation. Φ for a given MgxV2O5·nH2O composition is defined as,
  

	 Φ = GMgxV2O5·nH2O − nH2OµH2O	 (4.10)
  

G, nH2O, and µH2O in eqn (4.10) are the Gibbs energy of the cathode compo-
sition, the number of water (or solvent) molecules within the cathode frame-
work, and the chemical potential of water, respectively. Thus, eqn (4.9) is 
identical to eqn (4.6) when n2 = n1. While G is obtained from DFT calculations 
(G ≈ E), the electrolyte acts as the chemical reservoir for solvent molecules, 
i.e. sets µH2O, similar to the anode being the reservoir for the intercalating 
Mg. If the activity of water (aH2O) within a given electrolyte is known a priori, 
then µH2O can be obtained via eqn (4.11). For example, aH2O in a “wet” electro-
lyte (∼1) should be several orders of magnitude higher than a “dry” electro-
lyte (∼10−4), signifying aH2O as a unique handle that spans various electrolytic 
conditions.
  

	 2 2 2H O H O H OlnO RT a   	 (4.11)
  

2H O
O  in eqn (4.11) is the chemical potential of water in its standard state, 

which can be obtained by combining theory calculations and experimental 
data, as in eqn (4.12) and (4.13). For example, the enthalpy of water vapor 
(or ice) can be approximated from total energy DFT calculations (H ≈ E) of 
an isolated vapor molecule (ice unit cell). Subsequently, the DFT data can 
be combined with the experimental enthalpy of vaporization (melting) and 
the entropy of liquid water to obtain an accurate 

2H O
O  at a given tempera-

ture (T).
  

	    
2 2 2

0 DFT vaporization liquid
H O vapor H O H OΔ exp. exp.E H TS    	 (4.12)

  

	    
2 2 2

0 DFT melting liquid
H O Ice H O H OΔ exp. exp.E H TS    	 (4.13)

  

Combining eqn (4.9)–(4.13), one can estimate the impact of solvent co-
intercalation on the average intercalating voltage within a co-intercalating 
cathode framework, at various Mg compositions and electrolytic conditions.

4.1.1.5 � Stability Windows
An ideal electrolyte in a battery system has to remain electrochemically 
compatible with the anode and the cathode, i.e. it should not cause any 
performance-limiting decomposition products. However, being compati-
ble with the electrodes requires the electrolyte to remain chemically inert, 
while conducting the redox species through it, over a large range of ener-
gies. For example, a Mg battery that exhibits an average voltage of ∼2.5 V 
requires an electrolyte that can withstand a change in µMg of ∼5 eV across 
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the electrodes. As demonstrated for Li-ion systems,23 solid electrolytes 
often exhibit a lower range of energies over which they are stable compared 
to liquids. Thus, it is crucial to quantify (and subsequently predict) the elec-
trochemical stability range of candidate (solid) electrolytes while designing 
a battery system.

Thermodynamically, a Mg-electrolyte can either be reduced by transfer of 
Mg atoms from the anode (i.e. electrochemical reduction) or to the cathode 
(electrochemical oxidation). In turn, the reduction and oxidation of the elec-
trolyte will occur at well-defined voltages vs. Mg, nominally referred to as 
the reductive (or cathodic) and oxidative (or anodic) stability limits. Subse-
quently, the net voltage difference between the cathodic and anodic stability 
limits defines the electrochemical stability window (ESW) of an electrolyte. 
To a first order of approximation in liquid electrolytes, the stability window 
is given by the position of the lowest unoccupied molecular orbital (LUMO, 
relevant for reduction) and the highest occupied molecular orbital (HOMO, 
oxidation) levels, with respect to a Mg metal reference. More generally, the 
stability window depends on the range of Mg chemical potentials that the 
electrolyte is stable across.

To estimate the ESW of an electrolyte, we use eqn (4.14), where Φ, G, n, 
and µ are the grand-canonical potential, the Gibbs energy (G ≈ E), number 
of Mg atoms within the electrolyte phase (c), and the Mg chemical potential, 
respectively.23
  

	 Φ[c,µMg] = G[c] − nMg[c]µMg	 (4.14)
  

We can estimate the range of µMg that the electrolyte is stable across, given 
the relevant 0 K phase diagram is calculated. For example, we can use eqn 
(4.14) to estimate the ESW of a solid Mg-ionic conductor, MgSc2Se4,24 once 
we calculate the ternary Mg–Sc–Se phase diagram at 0 K. In case a specific 
electrode–electrolyte combination gives rise to complex interfacial reactions 
that may alter the stability limit of the electrolyte//electrode interface, eqn 
(4.14) has to be extended to include the entire electrode (e) and electrolyte (c) 
chemical space, as in eqn (4.15), where x is the degree of mixing between the 
electrode and electrolyte (0 ≤ x ≤ 1).
  

	 Φ[c,e,µMg] = min(xG[c] + (1 − x)G[e]) − nMg[xc + (1 − x)e]µMg	 (4.15)
  

where min(xG[c] + (1 − x)G[e]) and nMg[xc + (1 − x)e] in eqn (4.15) refer to the 
lowest Gibbs energy within the electrode–electrolyte phase space, and the 
number of Mg atoms, respectively, at the mixing fraction, x. Thus, to estimate 
the oxidative stability of MgSc2Se4 conductor in contact with a MgTi2S4 cath-
ode, we need to (i) calculate the entire Mg–Sc–Se–Ti–S phase-diagram with 
DFT at 0 K, (ii) consider possible interfacial products for different degrees 
of MgSc2Se4–MgTi2S4 mixing, and (iii) compute the oxidative stability for 
the resultant interfacial products, which will in turn determine the overall 
oxidative stability of the MgSc2Se4 electrolyte against MgTi2S4. Nevertheless, 
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91Theoretical Modelling of Multivalent Ions in Inorganic Hosts

kinetic barriers involved in the oxidation or reduction processes can cause 
significant deviations from the thermodynamic estimates made using eqn 
(4.14) or (4.15).

4.1.2  �Kinetics of Ionic Diffusion in Materials
In this section, we discuss the foundations of ion transport in solids and 
the derivation of the principal quantities that can be calculated from first-
principles. We start by assuming that ionic motion in battery materials fol-
lows Fick's first law (Section 4.2.1) and arrive at the definition of the diffusion 
coefficient through the Green–Kubo relationship. We conclude by connect-
ing the diffusion coefficient with the activation barrier for ionic migration, 
which is used in screening host materials for adequate ion transport.

4.1.2.1 � Fick's First Law and the Green–Kubo Model for Diffusion
Under the assumption of steady state, Fick's first law of eqn (4.16) can be 
used to describe the flux (J) of ionic species in solids across a concentration 
gradient (∇

→C).25
  

	 J = −Dc∇
→

C	 (4.16)
  

where Dc is the tensorial diffusion coefficient measuring the mobility of ions 
in the host structure, including any anisotropy in ionic motion. At thermody-
namic equilibrium, Dc is defined by eqn (4.17).
  

	 Dc = ΘDJ	 (4.17)
  

Θ is the so-called thermodynamic factor, as in eqn (4.18).
  

	
 

Θ

12

ln

N kT
N x




            
      

 

	 (4.18)

  

where N is the number of diffusing species (e.g. Mg2+), and µ is the chem-
ical potential of the diffusing species at concentration x. Thus, eqn (4.18) 
indicates that the underlying driving force for ionic diffusion is not the con-
centration gradient as in eqn (4.16), but the gradient of µ. Under ideal con-
ditions, µ is proportional to ln x, and diffusion is across a ∇→C (eqn (4.16)). 
Notably,  2N  of eqn (4.18) is the fluctuation of the number of mobile 
species in an open system. For simplicity, we can assume that the system is 
closed to the exchange of species, and thus  2N  is simply the fluctuation 
in a region of N  species. Therefore, Θ becomes a function of the spatial 
configuration of the mobile ions at a specific concentration.

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
9/

14
/2

01
9 

4:
19

:1
2 

PM
. 

Pu
bl

is
he

d 
on

 1
3 

Se
pt

em
be

r 
20

19
 o

n 
ht

tp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
17

88
01

64
07

-0
00

79
View Online

https://doi.org/10.1039/9781788016407-00079


Chapter 492

DJ of eqn (4.17) is the jump diffusion coefficient, which is,
  

	
2

J
1

1 1
lim ( ) ,

2d

N

it
i

D r t
t N



     
   



	 (4.19)
  

where d is the dimensionality of the host where ion i diffuses, while r→i(t) is 
its displacement after a period of time t. Therefore, as species i diffuses in the 
host material over time t, DJ measures the displacement of the centre of mass 
of the diffusing species. Altogether, eqn (4.17)–(4.19) form the Green–Kubo 
model of ionic diffusion. Theoretically, r→i(t) is estimated using either molecu-
lar dynamics (MD)24 or kinetic Monte Carlo simulations.

Often ionic motion in solids is measured by a tracer species with a diffu-
sion coefficient D∗ (eqn (4.20)), which is different from DJ (eqn (4.19)).
  

	
2*

1

1 1
lim ( ) .

2d

N

it
i

D r t
t N



         



	 (4.20)

  

D∗ tracks the displacement of the individual tracer, as opposed to the cen-
tre of mass of the diffusing species in DJ. Importantly, DJ reduces to D∗ if 
the displacements of the species are not correlated over time, i.e. diffusing 
atoms/ions move randomly.

4.1.2.2 � Diffusion Coefficients and Activation Barriers
Eqn (4.21) defines the Arrhenius-type relationship between the diffusion 
coefficient (DJ or simply D, eqn (4.19)) and the activation or migration barrier, 
∆Ea, in a crystalline material.
  

	 2 * aexp .D
E

D a g fx
kT


   

 
	 (4.21)

  

where a is the hop distance of the migrating ion between two identical crys-
tallographic sites, g is the geometric factor, f is a correlation factor and xD 
is the concentration of diffusion carriers (i.e. vacancies or interstitials). The 
hopping frequency of eqn (4.21), ν∗, can be written in terms of the attempt 
frequency ν that is related to bond vibrations (or phonons) and the activation 
entropy (ΔSa), which is the entropy difference between the stable and acti-
vated states. For simplicity, ν∗ is often assumed to range between 1012 and 
1013 Hz, while vibrational contributions dominate ΔSa.
  

	 * aexp
S
k

 
   

 
	 (4.22)

  

ΔEa is defined as the energy difference between the initial stable state (Ei in 
Figure 4.4) and the activated state (E∗), as in eqn (4.23).
  

	 ΔEa = E∗ − Ei	 (4.23)
  

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
9/

14
/2

01
9 

4:
19

:1
2 

PM
. 

Pu
bl

is
he

d 
on

 1
3 

Se
pt

em
be

r 
20

19
 o

n 
ht

tp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
17

88
01

64
07

-0
00

79
View Online

https://doi.org/10.1039/9781788016407-00079


93Theoretical Modelling of Multivalent Ions in Inorganic Hosts

Physically, ΔEa represents a saddle-point in the energy landscape, i.e. 
it is the lowest highest energy state that migrating ions have to cross. The 
path connecting the stable sites via the saddle point is called the minimum 
energy path (MEP). Figure 4.4 illustrates two ideal scenarios of MEP (black 
lines) for ionic migration in solids, namely (a) plateau-like, whereby the dif-
fusing ion crosses one activated state while migrating between two stable 
sites; (b) valley-type, where the ion traverses a metastable site as it migrates 
between stable sites. For example, a valley-type MEP is found for Li or Mg 
migration in a spinel-Mn2O4 structure,1 while Li-MEP in a layered-NiO2 struc-
ture is plateau-like.

4.1.2.3 � Estimating Migration Barriers
ΔEa in solids can be (directly or indirectly) measured from a number of 
experimental techniques, such as impedance spectroscopy, nuclear mag-
netic resonance (NMR), etc. Theoretically, ΔEa can be estimated from uti-
lizing saddle-point finding algorithms, such as the nudged elastic band 
(NEB) method,1 or extrapolated from MD simulations over a range of 
temperatures.24

The NEB method26–28 computes MEPs using an elastic band of geometric 
configurations, referred to as images (grey circles in Figure 4.4c), that approx-
imate the MEP, i.e. each image represents a distinct configuration along the 
ionic migration. The starting band (dashed black square in Figure 4.4c) is 
eventually relaxed to the MEP through a force projection scheme, where the  
force due to the potential energy acts perpendicular (F⊥) to the band, and  
the spring force (FS||) acts parallel to the band. FS|| ensures (roughly) equal 

Figure 4.4  ��Minimum energy path (MEP) experienced by ions moving in a host 
material in two idealised scenarios (a) plateau-type and (b) valley-type. 
The initial site is identified by Ei and is separated by a ∆Ea barrier to 
its equivalent site Ei+1 or to a metastable site with energy Em. (c) The 
starting elastic band of images (grey circles), highlighted by the dashed 
black square, that converges to the MEP connecting two ground state 
geometries, i.e. initial and final, within the nudged elastic band (NEB) 
method. The inset indicates the forces that are relevant in NEB, namely, 
(i) the spring force FS|| acting parallel to the NEB, and (ii) the force per-
pendicular to the NEB F⊥ set by the potential energy surface. FNEB is the 
total force acting along the band. Reproduced from ref. 26 with permis-
sion from AIP Publishing, Copyright 2008.
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spacing among images, giving rise to the elastic nature of the band, and aids 
in obtaining a reliable MEP profile. Thus, the convergence of the starting 
band to the MEP is done by minimizing the net force, FNEB. Since forces are 
straightforward to compute in DFT,29–31 the NEB method has been exten-
sively used in conjunction with DFT to compute the ΔEa of ions in solids (see 
Section 4.4.6).1,2,4,32,33

Nevertheless, reliably predicting MEP is time consuming as each image  
in the band represents a distinct DFT calculation. Furthermore, a linear 
interpolation of images between initial and final states may not represent an 
ideal starting band which can decelerate NEB convergence. Rong et al.34 have 
proposed two strategies to accelerate NEB calculations: (i) The PathFinder 
algorithm, based on the fact that ions in host structures migrate avoiding 
other atoms or bonds, i.e. avoiding regions with dramatic changes of elec-
tronic charge densities, and (ii) The ApproxNEB, which evaluates the energy 
of each image within the band using an inexpensive single-point DFT calcu-
lation. Thus, PathFinder (obtains approximate paths) and ApproxNEB (calcu-
lates approximate energies) can be used together to approximately predict 
ΔEa. An alternative methodology to find approximate MEPs35–37 is the bond 
valence site energy (BVSE) method, which can be thought of as an empirical 
force field that calculates the energies around various ionic sites. Nishitani et 
al.37 applied the BVSE to Mg2+ migration in several hosts reproducing the bar-
riers obtained using costly DFT-NEB calculations. To identify good Mg con-
ductors from large datasets one can employ these inexpensive methods.38

4.1.2.4 � Percolation Theory
The migration barriers extracted from structural models, as discussed in 
Sections 4.2.1 and 4.2.2, provide an atomic picture of ion dynamics. How-
ever, macroscopic diffusion of ions in materials relies on the existence of per-
colating networks of active migration channels, as displayed in Figure 4.5. 
Hence, in addition to recognizing facile microscopic hops from theory (e.g. 
DFT-NEB), it is important to identify whether a contiguous percolating net-
work of low-barrier migration channels exist, which can be mathematically 
modelled and predicted by percolation theory. Understanding the existence 
of percolation networks is paramount to be able to quantify and engineer the 
extent of usable capacity in electrodes.

Theoretically, the solution to the site percolation problem39–41 estimates 
the critical concentration x = xcrit (also referred to as “percolation thresh-
old”) at which an infinite network of contiguous connected sites exists in a 
randomly occupied infinite lattice. For example, in Figure 4.5 a minimum 
of 5 yellow circles is required to form a percolating network (green line) 
that can span the 2D lattice of 45 blue circles, resulting in an xcrit = 5/45 = 
1/9. The blue and yellow circles in Figure 4.5 can be considered to be the 
cathode framework and Mg atoms. Thus, two Mg atoms (yellow circles) are 
considered to be connected if there is an active Mg migration channel con-
necting the two sites. xcrit defines the critical concentration of Mg atoms 
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95Theoretical Modelling of Multivalent Ions in Inorganic Hosts

at which enough Mg sites are connected by active migration channels and 
macroscopic Mg transport is feasible. Thus, the probability that a percolat-
ing network exists within a lattice, p(x), exhibits a step-function at xcrit, as 
in eqn (4.24).
  

	
crit

crit

0
( )

1
x x

p x
x x

 
   

	 (4.24)
  

Percolation thresholds can be analytically derived for 2D lattices.39 How-
ever, in 3D lattices, numerical Monte Carlo simulations are used to assess 
xcrit.4,41–43 Due to the use of finite supercells with periodic boundary condi-
tions in Monte Carlo simulations (that result in “wrapping effects”), p(x) 
becomes a sigmoidal functional form. However, Urban et al.41 demonstrated 
that the inflection point of p(x), defining xcrit, does not change significantly 
due to a change of functional form, and a well-converged xcrit can be obtained 
with computationally tractable 3D supercells. Thus, Monte Carlo simulations 
can accurately capture the percolation dynamics yielding reliable estimates 
of xcrit for practical cathodes.

Another important quantity accessible from Monte Carlo simulations is 
the fraction of sites, F(x), participating in the percolating network. For exam-
ple, although the concentration of yellow circles (x) in Figure 4.5 exceeds xcrit, 
not all yellow circles are connected to the percolating network (green line), 
with several isolated “clusters” that are connected (red line). Similarly, for x > 
xcrit in a 3D cathode, each occupied Mg site is either part of a percolating net-
work (and participates in macroscopic diffusion) or is only a part of a finite 
cluster in isolation. Subsequently, F(x) can be defined as the fraction of the 

Figure 4.5  ��Schematic of a 2D lattice of blue circles with a percolating (green line) 
and a non-percolating (red line) network of contiguous connected yel-
low circles. The blue (yellow) circles can be considered to be cathode 
(Mg) atoms of an intercalation framework. The important quantities 
from percolation theory are listed in the green box at the bottom.
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number of sites in the percolating cluster (npercolating(x)) over the total number 
of sites in the 3D lattice (nsites(x)), as in eqn (4.25).
  

	  
 

 
MC

percoalting
percolating

sites sites MC

1 N
i

i

n x
F x n x

n n N
   	 (4.25)

  

In practice, F(x) is averaged over a large number of Monte Carlo sweeps 
(NMC), where each sweep covers a range of concentrations (x). Importantly, 
F(x) maps directly to the capacity of a cathode and can be compared immedi-
ately to electrochemical measurements.

4.1.3  �Density Functional Theory as a Tool to Assess 
Thermodynamic and Kinetic Properties

While we introduced the thermodynamic and kinetic properties that govern 
battery materials in Sections 4.1 and 4.2, here we discuss the first-principles 
methodologies that provide reliable prediction of such properties. Our focus 
is limited to DFT,12,13 which gives an accurate assessment of internal energies 
(total energies) that are used in the theoretical models presented in Sections 
4.1 and 4.2.

In DFT, as in other quantum-mechanical methods, such as Hartree–Fock 
(HF), Møller–Plesset, coupled cluster, etc.,44 the total energies are com-
puted by numerically solving the time-independent Schrödinger equation 
 H E  , which only requires the atomic positions in space as input. 
The foundation of DFT relies firmly on the Hohenberg and Kohn theorem,12 
which proves that “the full many-particle ground state is a unique functional 
of ρ(r)” and that the only the true ground state ρ(r) yields the lowest total 
energy, where ρ(r) is the electronic charge density. Hence, the Schrödinger 
wavefunction   , which depends on the 3(N + M) spatial coordinates (N, 
M = number of electrons, nuclei), is recast in terms of ρ(r) in DFT, which 
depends only on 3 spatial coordinates (x,y,z) and significantly reduces the 
computational cost.31,44 To simplify the complex description of the charge 
density of materials with multiple correlated electrons, Kohn and Sham13 
introduced the concept of a non-interacting electron-gas, i.e. electrons do 
not interact with each other and instead individually interact with a mean-
field ρ(r). Thus, the many-electron wavefunction is mapped as a collection 
of Kohn–Sham (KS) one-electron orbitals. Within this approximation, the 
charge density of the non-interacting electron-gas is mapped to the ground 
state density (ρ(r)) of the actual interacting electron system, with the ground 
state energy (E) written as a functional of ρ(r).
  

	          S XC Ne .dE r T J E V r r          
  

	 (4.26)
  

where TS[ρ] is the kinetic energy of the non-interacting electron gas, J[ρ] 
is the classical Coulomb repulsion between electrons, and VNe is the elec-
trostatic potential from the atomic nucleus. The exchange and correlation 

D
ow

nl
oa

de
d 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 o

n 
9/

14
/2

01
9 

4:
19

:1
2 

PM
. 

Pu
bl

is
he

d 
on

 1
3 

Se
pt

em
be

r 
20

19
 o

n 
ht

tp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
17

88
01

64
07

-0
00

79
View Online

https://doi.org/10.1039/9781788016407-00079


97Theoretical Modelling of Multivalent Ions in Inorganic Hosts

(XC) functional, EXC[ρ], contains non-classical interactions, such as elec-
tronic exchange (which follows the Pauli exclusion principle), the difference 
in kinetic energy between an interacting and a non-interacting electron gas, 
and static and dynamic interactions of individual electrons that result in 
correlation effects. Thus, by approximating a many-body wavefunction as a 
linear combination of KS orbitals, and by solving eqn (4.26) self-consistently, 
one can obtain a good approximation for the ground state energy of most 
practical multi-electron systems.

The grand-challenge in DFT, as categorized by Jacobs' ladder,45 is to accu-
rately describe the electronic XC whose functional form is unknown. A 
number of XC functionals have been developed, including the linear den-
sity approximation (LDA), where EXC depends on the local ρ(r),46 the general-
ized gradient approximation (GGA)47 accounting for local ρ(r) and ∇

→ρ(r), and 
meta-GGA functionals that include higher-order gradients of ρ and/or kinetic 
energy densities. An example of recent meta-GGA functionals is the strongly 
constrained and appropriately normed (SCAN) functional,48 satisfying the 17 
known constraints for XC functionals.

4.1.3.1 � GGA+U and Hybrid Functionals
The mean-field formulation of DFT does not penalize electrons enough from 
fictitiously interacting with themselves,46 that results in the so-called self-
interaction error (SIE), which affects total energy estimates. Particularly in 
oxides with open-shell 3d or 4f orbitals, which are relevant as intercalating 
cathodes (e.g. LiCoO2 and LiFePO4

 49) the SIE arising from insufficient local-
ization of electrons in the 3d/4f orbitals can be sizable. A number of correc-
tion schemes have been proposed to reduce the SIE:
  

●● DFT+U– The formalism by Anisimov et al.50 lowers the SIE in 3d and 
4f orbitals by adding an orbital-dependent on-site energy-penalty (U) 
for fractional occupation of electrons. DFT+U has been successfully 
applied to the describe the thermodynamics of intercalation in several 
cathodes.4,33,49,51–53 Recently, it was reported that the SCAN XC func-
tional also requires a U correction to accurately reproduce the ground 
state polymorph, electronic structure, and redox energetics of 3d and 
4f oxides.54

●● Hybrid functionals– SIE is reduced by adding a finite amount of the 
exact HF exchange in the XC functional. Two distinct classes of hybrid 
functionals exist:55,56 (i) linear global hybrids, where a portion of the 
DFT exchange term is replaced by the HF exchange throughout the sys-
tem, e.g. B3LYP57–59 and PBE0;60 and (ii) range-separated hybrids, where 
HF exchange is added within selective space domains, e.g. HSE06.61,62

  
The literature presents several examples where using the GGA+U63,64 or 

HSE06 65 functional significantly improves the prediction of thermodynamic 
properties (e.g. formation energies and intercalation voltages) of oxides 
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containing open-shell 3d and 4f transition metals compared to semi-local 
LDA and GGA XC functionals. In general, hybrid functionals are computa-
tionally more expensive than GGA+U calculations, especially when the KS 
orbitals are written in a plane-wave basis, since the HF exchange-integrals 
have to be explicitly computed. Therefore, GGA+U remains the strategy of 
choice for high-throughput DFT studies.2,4,49,51,63,64

Typically, GGA-based NEB (or molecular dynamics) calculations are used 
to estimate migration barriers (see Section 4.2.3),1,2,4,66 which have been 
shown to agree satisfactorily with experimental measurements in Li-ion, and 
Na-ion solid electrolytes.38 However, GGA may not accurately localize elec-
trons within the 3d/4f orbitals within oxide cathodes. For example, Barnes 
et al.67 recently reported that Mg2+ migration barriers in MnO3 is signifi-
cantly underestimated with GGA (∼0.92 eV) compared to HSE06 (∼1.53 eV). 
Although GGA+U can correct the SIE of GGA, the degree of electron localiza-
tion is expected to vary between the images (or as the ion migrates) within 
a NEB calculation, which in turn will require different U values for different 
images. Hence DFT+U is clearly not suitable for NEB calculations. A plausible 
alternative is performing NEB calculations using expensive hybrid function-
als, where more validation is required with experiments.

4.1.4  �Application of First-principles Methods to Multivalent 
Ion Intercalation Hosts

Our attention turns to the application of the methodologies introduced in 
Sections 4.1–4.3 to the study of materials relevant for Mg batteries.

4.1.4.1 � High-throughput Screening to Identify a Promising 
Intercalation Motif

The accuracy of DFT together with the availability of high-performance 
supercomputers, and materials informatics has fuelled a paradigm shift in 
materials design, thus allowing researchers to screen across material classes 
by systematic evaluation of properties. The combination of DFT, with pre/
post-processing algorithms and databases is referred to as high-throughput 
screening (HTS), which has been applied2 to identify candidate cathodes in a 
number of multivalent applications, including Al3+, Ca2+, Mg2+, Y3+ and Zn2+, 
as demonstrated in Figure 4.6.

Each point in Figure 4.6 represents the computed open circuit voltage of 
the intercalation MV ions using eqn (4.6), within M2O4 (M = 3d transition 
metal) cathodes that have the spinel structure (see Section 4.4.6). The volt-
ages in Figure 4.6 were computed at the GGA+U level of theory (see Section 
4.3.1). Expectedly, the computed voltages follow the electrochemical series 
across intercalant species (i.e. Li+/Li ∼ −3.04 V vs. SHE > Ca2+/Ca −2.87 V > 
Mg2+/Mg ∼ −2.37 V > Y3+/Y ∼ −2.37 V > Al3+/Al ∼ −1.67 V > Zn2+/Zn ∼ −0.76 
V), which provides further validation for calculating voltages using GGA+U. 
Notably, the multivalent intercalation voltages reported in Figure 4.6 are 
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99Theoretical Modelling of Multivalent Ions in Inorganic Hosts

always lower than 4 V (vs. the corresponding metal), with most Mg and Ca 
intercalation compounds providing voltages of between 2 and 4 V, which is 
lower than Li-intercalation within the same hosts. However, considering the 
additional charge carried by multivalent cations, a multivalent spinel cath-
ode could exhibit a significantly higher energy density than the correspond-
ing Li version.

Apart from computing intercalation voltages, it is important to verify the 
relative thermodynamic stability of the discharged and charged composi-
tions, by calculating their Ehull (see Section 4.1.1), which is readily available 
on the “Battery Explorer” app35,49 in the Materials Project website.68 Also 
included in the app are theoretical (gravimetric and volumetric) capacities 
and energy densities. It has been estimated by Sun et al.69 that structures 
with values of energy above the hull below ∼70 meV/atom may be accessible 
via specific synthesis procedures even though they are metastable at 0 K.

4.1.4.2 � Voltage Curves as a Function of Temperature, the Case of 
TiS2, CrO2 and V2O5

This section emphasizes the predictive power of DFT calculations when 
coupled with cluster expansion models and statistical thermodynamics. We 
present the simulated Mg intercalation voltage curves as a function of tem-
perature for three prototypical cathode materials, including, TiS2, CrO2, and 
V2O5, which have been the subject of several experimental investigations.70–74

Figure 4.6  ��Predicted open circuit voltages vs. gravimetric capacities of multiva-
lent ions Al, Ca, Mg, Y and Zn in M2O4 spinels (with M = Mn, Fe, Co, 
Ni, and Cr). Transition metals M are displayed next to each compound. 
Dashed blue lines are target energy densities, i.e. 600, 800, and 1000 W 
h kg−1. Reproduced from ref. 2 with permission from the Royal Society 
of Chemistry.
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To date, Mg intercalation in spinel-TiS2, against a Mg metal anode and an 
aluminium–chloride-based electrolyte has provided the highest energy den-
sity reversible Mg battery.72 Figure 4.7 shows the computed phase diagram 
of Mg intercalation into various polymorphs of TiS2 for Mg concentrations in 
the range of 0 < x < 0.5,66 where each point at a Mg composition represents a 
specific arrangement of Mg and vacancies, or Mg orderings, in TiS2.

Experimentally, MgxTiS2 exists in two phases, the layered-O1 (blue cir-
cles in Figure 4.7), and the spinel (orange). Other layered phases where Mg 
is coordinated by regular sulphur octahedra (O3) but following a different 
stacking sequence or prismatic structures (P3/P2) were also investigated in 
ref. 66. Figure 4.7 shows that Mg favourably intercalates in the TiS2 frame-
work up to a composition of xMg = ½. The layered-phase (blue), hitting the 
lowest formation energies, defines the ground state at Mg compositions 

Figure 4.7  ��(a) Compositional phase diagram computed with DFT at 0 K of Mg 
intercalation in various phases of TiS2.66 The x-axis shows the Mg com-
position and y-axis the formation energy vs. empty TiS2. The orange 
diamonds indicate the spinel-TiS2. The red squares and blue circles 
represent the layered-TiS2 with octahedrally coordinated Mg and two 
distinct Ti–S layer stacking. Similarly, empty and filled green triangles 
indicate layered-TiS2 as well, where Mg is in a prismatic coordination. 
Computed voltage curves at 300 K for Mg intercalation in two TiS2 
phases, (b) layered O1 and (c) spinel. Reproduced from ref. 66 with per-
mission from the American Chemical Society, Copyright 2015.
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101Theoretical Modelling of Multivalent Ions in Inorganic Hosts

of 0 < x < 0.5, and is followed in stability by the O3 phases. Experimental 
observations70,72,73 verified that the spinel structure O3 is not ground-state 
at all. A certain range of Mg compositions and special care is required to 
intercalate Mg in this polymorph.70,72,73 From a visual inspection of the O1 
structures, several stable ordered phases can be identified, at xMg = 1/6, 1/3 
and 1/2. The ordering at xMg = 1/6 displays every other Mg layer being com-
pletely empty while the remaining alternating layers are 1/3 occupied. In 
the case of Mg1/3TiS2, every Mg layer is 1/3 Mg occupied. At xMg = 1/2, Mg 
ions order into staggered arrangements of Mg rows (extending in each 2D 
plane) across different layers of TiS2.

Using the energetics of the Mg orderings in TiS2 (Figure 4.7a) the authors 
fitted a cluster expansion (see Section 4.1.2), which includes configurational 
contributions to the Gibbs energy of the MgxTiS2 chemical space. Figure 4.7 
shows the voltage profile at 300 K of the MgxTiS2 system, calculated using 
Monte Carlo simulations based on the cluster expansion, in (b) the layered 
phase and (c) the spinel phase. The sloping nature of both voltage curves 
(0 < x < 0.3 in layered, and up to x ∼0.5 in spinel) reflects the solid–solu-
tion character for Mg intercalation in the TiS2 phases. In Figure 4.7b, three 
steps can be identified, corresponding to minima in panel a, which match 
the Mg orderings at xMg = 1/6, 1/3 and 1/2. In contrast, regions where the 
voltage curve is smooth reflect the solid–solution behaviour and correspond 
to regimes of disorder between Mg and vacancies. The spinel phase of Figure 
4.7c shows a continuous solid–solution behaviour across Mg compositions, 
which the authors66 attributed to a larger degree of electrostatic screening in 
the spinel compared to the O1 phase.

MgxCr2O4 is one of the highest voltage Mg intercalation cathodes as identi-
fied from the high-throughput computational screening of Liu et al. (Figure 
4.6).2 To understand the phase behaviour of Cr2O4 during Mg intercalation, 
Chen et al.52 fitted a cluster expansion (see Section 4.1.2) of the Mg vacancy 
configurational space within MgxCr2O4. Subsequently, the authors performed 
Monte Carlo simulations to quantify changes in the voltage profile during 
Mg (de-)intercalation, as a function of temperature (Figure 4.8a). A fair agree-
ment between the voltage profile computed by the cluster expansion at 0 
K (yellow line of Figure 4.8a) to the DFT version (green line) was found. At 
room temperature (black line in Figure 4.8a) a fairly smeared voltage profile 
is obtained with distinct voltage jumps at xMg = 0.5 and 0.33. Thus, the Mg 
vacancy ground states forming at xMg = 0.5 and 0.33 are energetically stable 
compared to configurations at other Mg compositions and will exist during 
(de-)intercalation even under room temperature conditions. The authors 
demonstrated that ground states at xMg = 0.5 and 0.33 will curb Mg mobil-
ity during Mg (de-)intercalation, attributed to their corresponding stability. 
At xMg < 0.25 the steep voltage increase is due to the high instability of the 
empty spinel-Cr2O4 structure, which may potentially lead to decomposition 
of the spinel structure to a stable Cr2O4 polymorph.

In the case of V2O5, Sai Gautam et al.53 identified δ-V2O5 as a promising Mg 
cathode owing to a combination of a reasonable average voltage (∼2.5 V) and 
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migration barrier (∼600–760 meV). Cluster expansion-based Monte Carlo 
simulations were performed to derive the temperature-composition phase-
diagram (Figure 4.8b) of Mg intercalation, which indicated that δ-MgxV2O5 
was a phase separating system, with the concomitant formation of Mg-rich 
and Mg-poor domains. The two-phase behaviour at intermediate Mg com-
positions (0 < x < 1) should exist up to high temperatures (melting point of 
V2O5 ∼954 K). Given that the ground state of V2O5 is the α polymorph (α is 
more stable than δ by ∼100 meV/f.u.) and the α and δ polymorphs are only 
separated by a shear transition of alternate V2O5 layers, it is crucial for the de-
intercalated δ-V2O5 to remain metastable with Mg (de-)intercalation if δ-V2O5 
is to be successfully used as a practical Mg cathode.

4.1.4.3 � Conversion vs. Intercalation During Mg Reduction
Figure 4.9 plots the intercalation vs. conversion reaction voltages for a one 
electron reduction that involves the reaction of one mole of Mg per mole 
of M2X4, where M and X are a 3d transition metal and a chalcogen (i.e. O, S, 
Se), respectively.21 The polymorph under consideration can exhibit the low-
est energy at the intercalated/discharged (left panel in Figure 4.9) or empty/
charged (right panel) state (see Section 4.1.3). Blue squares in Figure 4.9 
indicate that intercalation is preferred, whereas red squares indicate a con-
version preference. From Figure 4.9, it is clear that most 3d sulphides and 
selenides favour conversion reactions upon Mg reduction. For 3d oxides, 
when considering the lowest energy discharged polymorph, there are a few 
compounds that resist conversion reactions, such as oxides of V, Cr, Mn, Fe 
and Co that favour intercalation over conversion upon Mg reduction. Inter-
estingly, Cr2O4 displays the highest level of intercalation preference (or resis-
tance to conversion) among the 3d oxides. However, even among oxides, 
conversion reactions are favoured during Mg reduction if the lowest energy 

Figure 4.8  ��(a) 0 and 298 K voltage curves for Mg intercalation in spinel-Cr2O4. 
Reproduced from ref. 52 with permission from the American Chemical 
Society, Copyright 2018. (b) Temperature-composition phase diagram 
for Mg intercalation in δ-V2O5. Reproduced from ref. 53 with permission 
from the American Chemical Society, Copyright 2015.
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charged polymorph is considered (right panel). Hence, this analysis high-
lights three important trends: (i) oxides resist conversion better than sulphi-
des and selenides, (ii) discharged polymorphs favour intercalation, (iii) Cr 
resists conversion to the largest degree among the 3d metals.

4.1.4.4 � Co-intercalation in Xerogel-V2O5

Ref. 22 reports the impact of solvent co-intercalation under various elec-
trolyte conditions for Mg discharge within xerogel-V2O5, which is plotted in 
Figure 4.10. Using a three-step computational strategy to resolve the xerogel-
V2O5 structure, Sai Gautam et al.22 calculated Mg intercalation voltages 
using the grand-potential (of Section 4.1.4) at various Mg concentrations 
and electrolyte conditions (i.e. aH2O). The authors reported that at low Mg 
concentrations (xMg ≤ 0.25, red line in Figure 4.10), water co-intercalation is 
thermodynamically favoured in both wet (aH2O∼1) and dry (aH2O∼10−4) elec-
trolytes, as indicated by the linear dependence of voltages on aH2O. Water 
co-intercalation occurs only under wet conditions at higher Mg concentra-
tions (0.25 ≤ xMg ≤ 0.5, blue line in Figure 4.10). Interestingly, a “superdry” 
electrolyte (aH2O∼10−8) suppresses water co-intercalation (no dependence of 
voltage on aH2O) and removes any existing water from the xerogel structure 
(see equation, 0 ↔ 0). Superdry electrolytes also alter the phase behaviour of 
the xerogel, signified by the merging of the low and high Mg voltage curves 
in Figure 4.10. Therefore, water co-intercalation and the dependence of the 
intercalation voltage on electrolyte conditions have important consequences 
in the choice of electrode/electrolyte pairs, where theoretical studies, such as 
in ref. 22, can provide important insights for experiments.

Figure 4.9  ��Difference between the intercalation and conversion voltages for Mg 
reduction in M2X4 cathodes, where M = 3d transition metal and X = O, 
S, or Se. Left and right panels correspond to reduction reactions using 
the lowest energy of the discharged and charged polymorphs. Adapted 
from ref. 21 with permission from John Wiley and Sons, © 2018 WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim.
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4.1.4.5 � Electrochemical Stability Windows of Coating Materials
A number of reports6,7,75 have clearly demonstrated that Mg electrolytes dis-
play a limited ESW (∼1.5 V–3.0 V vs. Mg) compared to Li-electrolytes (∼1.5 V–5 
V vs. Li).76 Thus, using protective anodic/cathodic coatings is one strategy to 
mitigate the poor ESW of Mg electrolytes. Chen et al.77 predicted the EWS of 
several Mg-containing compounds, which may form as a result of electro-
lyte decomposition at either the Mg metal anode or high-voltage cathodes. 
The authors presented an exhaustive study of binary, ternary, and quater-
nary chemical spaces that contain non-redox-active metals (or cations) and 
anions.

Figure 4.11 depicts ESWs (using the framework in Section 4.1.5) of Mg ter-
nary and quaternary oxides. Left (right) end of each bar indicates the reduc-
tive (oxidative) stability, with the number near each bar signifying the ESW. 
The voltage scale is referenced to Mg2+/Mg, i.e. 0 V is Mg metal while ∼3.5 V is 
MgxCr2O4 (see Section 4.4.2). Interestingly, none of the Mg ternary (or quater-
nary) oxides are stable against Mg metal, as indicated by the lack of reductive 
stability of any compound up to 0 V, with Mg(BH4)2 (not shown in Figure 4.11)  
exhibiting the best reductive stability (0.01 V vs. Mg) among ternary Mg- 
compounds. Ternary oxides do not supersede the anodic stability of MgF2 
(∼5.8 V,77 not shown in Figure 4.11), with MgP4O11 (∼4.55 V), MgS2O7 (∼4.45 
V), and quaternary Mg0.5Ti2(PO4)3 (∼3.82 V) displaying high enough oxida-
tive stabilities (>3.5 V) that could be compatible with high voltage cathodes. 
As noted in ref. 77, Mg mobility in these compounds needs to be assessed 
(see the examples in Section 4.4.6) before practical coating strategies can be 
implemented.

Figure 4.10  ��Average Mg intercalation voltages vs. Mg2+/Mg at high (blue) and low 
(red) Mg concentrations as a function of water activity within the elec-
trolyte. Equations along the voltage lines indicate the change in water 
content per V2O5 formula unit. Reproduced from ref. 22 with permis-
sion from the American Chemical Society, Copyright 2016.
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4.1.4.6 � Assessing Mg Migration in a Spinel Structure

Here, we will examine the prediction of Mg migration barriers in a number 
of hosts exhibiting the spinel structure (Figure 4.12) using the methods in 
Section 4.2. Before delving into Mg migration, it is important to define an 
upper-limit of the migration barrier that electrodes can tolerate. As demon-
strated previously,1,2,5 by assuming reasonable battery performance, e.g. a 2 
h (dis)charge time t for a particle of active materials of a size of 1 µm (diffu-
sion length), one arrives to a minimum required Mg diffusivity, D ∼10−12 cm2 
s−1, since the diffusion length scales as Dt . If it assumed that a random-
walk model for ion diffusion holds, ν ≈ 1012 s−1 and a ≈ 3 Å, using eqn (4.21), 
one defines a maximum ΔEa ∼525 meV. In nanoparticle cathodes operating 
at a higher temperature (∼60 °C), the maximum ΔEa can go up to ∼750 meV.5 

Figure 4.11  ��ESW of Mg-containing ternary and quaternary oxides as indicated 
next to each bar. The voltages (vs. Mg metal) across which the com-
pound is stable is indicated by the width of each bar. Adapted from 
ref. 77, https://doi.org/10.3389/fchem.2019.00024, under the terms 
of the CC BY 4.0 licence, https://creativecommons.org/licenses/
by/4.0/.
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The accuracy of computed barriers is typically ± 50 meV, which represents ∼1 
order of magnitude in diffusivity.

In spinel-MgM2X4, the cation Mg and M order in a face-centred cubic (FCC) 
packing of anions X, as in Figure 4.12a. In “normal” spinels, ½ of the octahe-
dral (oct) 16d sites are M atoms (e.g. Ti or Mn, blue polyhedra), while ⅛ of the 
tetrahedral (tet) 8a sites are Mg ions (orange polyhedra). Depending on the 
ionic radii of Mg2+ and M2+/3+/4+, the spinel structure can exhibit “inversion”, 
where a fraction of the 8a (16d) sites are occupied by M (Mg) atoms. An exten-
sive account of the spinel structure is given in ref. 78.

In screening for high-voltage oxide spinel cathodes, Liu et al.2 calculated 
the Mg migration barriers in MgxM2O4 (M = Mn, Co, Ni or Cr) with DFT-NEB 
calculations (see Section 4.2.3). The MEP in MgxM2O4 follows a tet(8a) → 
oct(16c) → tet(8a) topology (top left in Figure 4.13), with the barrier often 
determined by the size of the triangular face shared by the 8a and 16c sites 
(bottom left in Figure 4.13). The authors demonstrated that the specific 
choice of M does not affect the energy landscape during migration with 
the calculated barriers being (charged–discharged limits) 776–486 meV for 
MgxMn2O4, 698–520 meV for MgxCo2O4, 669–485 meV for MgxNi2O4, and 
616–636 meV for MgxCr2O4. These barriers are larger in magnitude than for 
spinel-TiS2 (∼550 meV, Figure 4.12b), which can be attributed to the strong 
ionic bonding and electrostatic interactions between Mg2+ and O2−.

Apart from calculating voltages, the authors in ref. 66 predicted the Mg 
migration barriers into spinel-TiS2, which were later shown to reversibly 
intercalate Mg experimentally by Sun et al.72 In spinel-TiS2, experiments72 
have shown that a significant concentration of Mg (x ∼0.6 per f.u.) resides in 
the usually-vacant oct sites, 16c (dashed square in Figure 4.12a). Therefore, 

Figure 4.12  ��(a) Layout of Mg, M and X ions in the spinel structure MgM2X4, where 
M is a transition metal and X the anion (O2−, S2− or Se2−). Blue and 
orange polyhedra represent the M (16d, oct) and Mg (8a, tet) sites. 
Dashed rectangles and triangles indicate the vacant 16c (oct) sites and 
48f (tet) sites, respectively. Adapted from ref. 4 with permission from 
the American Chemical Society, Copyright 2017. (b) NEB energy bar-
rier of Mg2+ migration in MgTiS2, at different volumes and in the high 
vacancy limit. (c) Topology of Mg migration in MgTiS2, where α and δ 
are the 16c sites, and γ is the 8a site. Adapted from ref. 66 with permis-
sion from the American Chemical Society, Copyright 2015.
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the authors66 assumed that the Mg2+ ions in spinel-TiS2 migrate between 
16c sites (α and δ in Figure 4.12c) via a local energy minima, the tet 8a site, 
where β in Figure 4.12c indicates the triangular face sharing site. The cal-
culated barriers have been computed in the high vacancy limit – only one 
16c amongst the 32 available in the lattice model is occupied by Mg. The 
calculated migration barriers decrease significantly from ∼0.85 to ∼0.55 eV 
as the volume increases by 10% from equilibrium (Figure 4.12b). These 
barriers are overestimated compared to values from galvanostatic intermit-
tent titration experiments (∼550 meV) and theory (500–600 meV) by Sun 
et al.,72 which could be due to the specific XC functional used in the NEB 
calculations.

Based on Mg migration barriers of a variety of cathode hosts, three 
practical design rules were developed by Rong et al. to identify good Mg 
conductors:1,24

  
	 1.	� Avoid materials with preferred Mg coordination. A statistical analysis of 

the Inorganic Crystal Structural Database demonstrates that Mg highly 
prefers an octahedral coordination in oxides.1,2,79 Hence, materials 
where Mg does not occupy octahedral sites should be preferred.1,24

Figure 4.13  ��Right panel, calculated Mg migration barriers (orange bars) and the vol-
ume per anion (blue) in chalcogenides MgM2Z4 spinels. Top-left panel, 
typical tet → oct → tet migration path in spinels, with the energy of 
corresponding sites indicated by Etet, and Eoct. Ea is the migration bar-
rier. Bottom-left panel, representation of the effect of anion size on the 
triangular face shared between the 8a and 16c sites. Adapted from ref. 
23, https://doi.org/10.1038/s41467-017-01772-1, under the terms of 
the CC BY 4.0 licence, https://creativecommons.org/licenses/by/4.0/.
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Chapter 4108

	 2.	� Limiting changes to ionic coordination.1 Smaller changes in coordination 
environment along the migration path flattens the energy landscape, 
and should reduce barriers.1,80

	 3.	� Increase volume per anion. Larger anion volumes correlate with weaker 
electrostatic interactions of Mg with the anion and consequently reduce 
barriers.24,32

  
Canepa et al.24 applied these rules to identify the first class of room-

temperature Mg ionic conductors, which are ternary spinel-MgM2X4, where 
M = In, Y or Sc and X = S or Se. Figure 4.13 depicts the computed barriers 
(orange bars) along the 8a → 16c → 8a (tet → oct → tet) pathway and vol-
ume per anion (per S2− and Se2−, blue bars) in these materials. The barriers 
in Figure 4.13 are lower compared to those of cathode sulphur spinels (e.g. 
∼550 meV in MgTi2S4), with MgY2S4 (∼360 meV), MgY2Se4 (∼361 meV), and 
MgSc2Se4 (∼375 meV) exhibiting the lowest barriers among the spinels con-
sidered. For MgSc2Se4,24 impedance and variable-temperature 25Mg NMR 
measurements were used to validate the theoretical predictions. However, 
impedance experiments measured non-negligible electronic conductivity, 
detrimental to the utilization of MgSc2Se4 as a Mg solid electrolyte. Subse-
quent theory investigations revealed that the chalcogenide spinels are prone 
to n-type conductivity, especially when synthesized under anion-poor envi-
ronments (or high temperatures).81

4.1.4.7 � Probing Long-range Mg Transport with Percolation 
Theory

In Section 4.2.4 we introduced the percolation theory, which was used to 
predict conditions under which long-range Mg transport occurs in spinel-
MgxMn2O4, a potential cathode for Mg batteries2,71 but prone to inversion 
(see Section 4.4.6). A number of possible Mg migration pathways can be envi-
sioned in inverted MgxMn2O4, and a complete description of these is given 
in ref. 4. A barrier of 750 meV was used as the defining criterion to classify 
active and inactive migration pathways, i.e. pathways that have barriers below 
(above) 750 meV facilitate or open (block or close) Mg migration. Within the 
percolation theory, sites in the spinel that are connected by open pathways 
(<750 meV barrier) are considered connected and can eventually form a con-
tiguous percolating network.

Figure 4.14a displays the percolation threshold (xcrit, black lines), at various 
degrees of inversion (i) in Mn3−xO4 and various Mg vacancy concentrations 
(z). The x-axis starts at a Mn3O4 (i.e. 50% Mn-excess or 100% Mg-deficient) 
composition and covers Mg concentrations up to Mg1.5Mn1.5O4 (i.e. 25% Mn-
deficient, 50% Mg-excess). The dashed yellow line identifies the stoichio-
metric spinel (i.e. Mn : O = 2 : 4). The blue (red) coloured region signifies Mg 
concentrations which do (do not) facilitate percolation. In general, percola-
tion thresholds in the Mn-excess domain (i.e. xcrit < 1) are desirable since they 
signify the presence of percolating networks in the stoichiometric spinel.
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At i = 0, the stoichiometric spinel (yellow line) allows Mg percolation since 
the threshold (xcrit ≈ 0.44) is in the Mn-excess domain. The stoichiometric 
discharged spinel (z = 0) can tolerate i ∼0.55 before percolation stops, while 
a charged stoichiometric spinel (z = 0.5) enables Mg transport up to i ∼0.59. 
Also, long-range Mg diffusion can be achieved at higher degrees of inversion 
(0.59 < i < 0.77) only under Mn-deficient concentrations (i.e. x > 1). Further-
more, the extractable Mg content (or the measured electrochemical capacity) 
from the Mn-oxide spinel is plotted as a function of i in Figure 4.14b for a 
stoichiometric spinel. Note that the extractable capacity decreases contin-
uously with i, signifying the increasing number of Mg atoms that form iso-
lated clusters within the spinel and hence do not participate in long-range 
diffusion. Finally, the extractable capacity reaches zero at i ∼0.6, which cor-
responds to the highest degree of inversion that a stoichiometric spinel can 
tolerate before Mg percolation stops (Figure 4.14a). Thus, percolation theory 
can act as a robust theoretical framework to translate calculated microscopic 
migration barriers into long-range macroscopic transport properties.

4.2  �Conclusions
The development of high energy density Mg batteries has been constrained 
by the lack of high voltage cathodes with good enough Mg mobility and reli-
able electrolytes that are stable against Mg metal and a high voltage cathode. 
Materials discovery, specifically using theory and computations to screen a 
variety of chemical spaces is required to make intercalation Mg batteries a 
reality. Here, we have introduced concepts of thermodynamics and kinetics 

Figure 4.14  ��(a) Critical concentration (xcrit) of Mg percolation in (Mgx−zVacz)
Mn3−xO4. The stoichiometric concentration of (Mgx−zVacz)Mn3−xO4 
(Mn : O = 2 : 4) is illustrated by the yellow line. The zero on the x-axis 
indicates the Mn3O4 composition. z indicates the vacancy (Vac) con-
centration in (Mgx−zVacz)Mn3−xO4. (b) The extractable Mg content (or 
capacity) for a stoichiometric Mn-oxide spinel as a function of the 
degree of inversion. Adapted from ref. 4 with permission from the 
American Chemical Society, Copyright 2017.
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that are relevant for battery materials, briefly overviewed the levels of approx-
imations used in the electronic structure methods (with a focus on DFT) to 
assess material properties and demonstrated practical examples where accu-
rate properties have been calculated and benchmarked against experiments. 
We have also discussed examples where a high-throughput computational 
infrastructure has been used to screen for conversion-resistant cathodes, sta-
ble coating materials (and Mg ionic conductors) and formulate design princi-
ples that govern Mg mobility within typical solid frameworks. However, the 
hunt for reliable cathodes, coatings, and electrolytes for practical Mg and 
multivalent batteries is still ongoing. We hope that this chapter will provide 
sufficient guidance to the entire scientific community on the materials prop-
erties that can be accurately predicted theoretically, which should help in the 
screening and/or understanding of novel materials for high energy density 
Mg batteries.
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