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Towards autonomous high-throughput multiscale
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To date, battery research largely follows an ‘‘Edisonian’’ approach based on experimental trial-and-error in

contrast to a systematic strategy of design-of-experiments. Battery interfaces are arguably the most

important yet the least understood components of energy storage devices. To transform the way we

perform battery research, theory and computations can be used simultaneously to understand and guide

the design of meaningful and targeted experiments. However, it is well known that modelling of battery

interfaces is computationally prohibitive in terms of both resources and time due to the large size of

systems to provide realistic and descriptive models. Recently, automated and intelligent in silico tools have

been developed to accelerate the description of materials, such as workflows designed to generate,

handle and analyse hundreds of thousands of materials data and at different scales. Here, we assess the

latest computational strategies, outline unresolved questions, and propose future directions that will guide

and drive future developments of interfaces in energy storage devices. The future directions include the

development of complementary experimental techniques, such as high-throughput automated materials

synthesis, operando characterization, cell assembly and integrated platforms for device testing.

Broader context
Interfaces are central to rechargeable batteries as they are the connecting media between electrodes, electrolytes, and current collectors. Despite the crucial role
of interfaces in battery devices, the electrochemical and mechanical processes at the interfaces still remain elusive. An autonomous in silico strategy harnessing
the power of supercomputers, powerful algorithms, databases, and intelligent workflows, together with the intuition of scientists, can facilitate the screening of
thousands of complex interfaces. Provided the specific challenges identified in this perspective are solved, laboratories of the future can envisage a concerted
interaction between autonomous computational tools and complementary high-throughput experimental techniques.

Introduction

Renewable energy resources, including solar, wind, and hydro-
electric, are secure and clean ways to harvest the energy required
by our society and to tackle pressing global warming issues.
Although hydroelectric, photovoltaic and wind-turbine technologies
are mature, they are intermittent in nature. Storing and delivering
on request large amounts of electricity remains a notable challenge.

Rechargeable (also termed secondary) batteries appear as
one of the viable solutions to this problem. Battery cells based
on intercalation or conversion materials transform the
chemical energy of bonds into electricity via three main
components identified in Fig. 1: (i) the cathode, (ii) the anode
(electrodes) and (iii) the electrolyte (liquid or solid).

Fig. 1 displays the battery cell components at various length
scales: at the device level, meso-structure level, and the atomic
scale, respectively. The vital functions of the battery cell are also
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enabled by other components, such as the current collectors,
polymer separator, electrolyte additives, carbon black and
binders, as well as various protective coating materials in the
electrodes (see Fig. 1). Although these components are vital for
the battery cell functions, being inactive they inevitably
contribute to the ‘‘dead’’ mass and volume of the battery cell.

As shown in Fig. 1, all battery components are ‘‘interfaced’’
with each other resulting in the facile exchange of the active
ions (Li+, Na+ and even multivalent species) and electrons.
These interfaces can be homogeneous, e.g., the interface
between two particles of the anode active material, but also
heterogeneous in nature, for example, the interface between
the cathode material and the protective coating.

Interfacial degradation as well as loss of contact contributes
to several undesired phenomena, for example, the self-discharge
of the device over time, a notable drop in performance and
eventually battery cell failure. Therefore, preserving the integrity
of such interfaces remains a primary task in the development of
improved battery devices.

Until recently,1–8 the battery community has often regarded the
‘‘conditioning’’ and preservation of various interfaces as a mere
problem of materials optimization and attention is mostly given at
the stages of development and manufacturing of the devices.
Indeed, the precious knowledge developed to stabilize and improve
interfaces remains in many cases buried in the patent literature. A
notable example is the NaSICON-type Ohara-glass-ceramic ‘‘LIC-
GC’’ commercialized by Ohara Inc. (Kanagawa, Japan).9–11 While
the composition and properties of the Ohara-glass are not fully
disclosed,10,11 the accumulated knowhow shows the effectiveness
of this glass-ceramic as a protective/stabilizing layer prolonging the
stability of the interface between solid electrolytes and electrodes.11

Other similar examples exist in the field.12–14

Undoubtedly, interfaces are complex in terms of their structures
and are dynamic in nature, which make their study challenging,

often comprising several length and time scales. One major difficulty
in the study of interfaces is their poor direct access by investigation
tools (e.g., Raman, infrared, and UV-visible spectroscopy, neutron
and X-ray diffraction techniques, electron microscopy, X-ray com-
puted tomography, etc.); such interfaces are said to be ‘‘buried’’. For
example, Lewis et al. have recently unravelled the complex decom-
position mechanism of the interfaces of a solid electrolyte
(Li10SnP2S12) against Li metal using operando synchrotron X-ray
computed microtomography.15 Notwithstanding the advancements
brought by this study towards the comprehension of Li-metal/solid-
electrolyte interfaces, many unanswered questions still exist.

To this end, computational materials science is attractive as it
can accelerate the discovery of materials and speed up the
development of new or improved existing technologies.16

To date, most of the efforts towards autonomous techniques have
been focused toward modelling bulk materials efficiently (see
examples in Table 1), but these are not sufficient when our
understanding of interfaces is crucial to solve specific
challenges in battery devices, which entails a wide range of
space–time scales. While the ability of analysing thousands of
materials simultaneously is important, this analysis also needs to
be autonomous and intelligent, to minimize the user intervention
and learn from existing data trends (also see more in Table 1).17–22

Although several reviews/perspectives about multiscale
modelling of battery interfaces have been published,16,52–54

there is no specific effort devoted to strategies of autonomous
high-throughput multiscale modelling of battery interfaces.
The complexity of predicting the properties of the interfaces
could be achieved if the items in Table 2 are solved.

Indeed, as a research community we are still far from
understanding the steps towards the automation of methodo-
logies, which are required to fully comprehend inter-
facial phenomena. This perspective intends to shed light
on this topic from high-throughput atomistic modelling,
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autonomous workflows, multiscale modelling, and high-throughput
experiments.

High-throughput atomistic modelling

At the atomistic level, high-throughput computational (HTC)
materials science leverages advanced electronic-structure
methods, predominantly density functional theory,55,56 principles
of electrochemistry and thermodynamics together with super-
computers, databases and the ability of powerful algorithms to
analyse large computed datasets.

To date, the field of energy materials has benefited
enormously from the application of HTC techniques, which have
been of unparalleled use in the identification of new electrocata-
lysts, materials for photovoltaics and photoelectrochemical water
splitting, as well as electrodes for solid oxide fuel cells.23,35,39,57–69

When the focus goes to battery materials, HTC methodologies
have been largely utilized to quickly screen large compositional
spaces of novel chemistries for cathode and anode materials, and
more recently solid electrolytes. A commonality of all databases
listed in Table 1 is that most of the technologically relevant
quantities are derived from ground state energies extracted from
first-principles calculations of ordered materials, and thus most
descriptors revolve around thermodynamic descriptors. Despite
this effort of cataloguing the properties of materials, kinetic
descriptors are certainly lacking, which is mostly due to the
complexity involved in the computations of such properties in
an autonomous fashion.70–77

In this context, specific pre/post-processing tools and
modular workflows targeted to the discovery of novel electrode
and electrolyte chemistries have been developed within the
HTC effort of the Materials Project (see Table 1).17,18,23–25 Other
database/repository initiatives shown in Table 1 appear less

Fig. 1 Multiscale diagram of battery components from the device to the atomic level. The battery components include the anode and the cathode, the (inactive)
electrolyte in green, the (inactive) current collectors in grey, the (inactive) protective coating materials on the cathode, and the (inactive) polymer separators in
yellow. Highlighted by yellow, grey, and green dots are, respectively, binder materials, carbon black, and electrolyte additives which also form interfaces between
the battery components. For solid-state batteries, the interfaces between solid electrolytes and electrodes are shown in the box at the right bottom corner.
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tailored towards energy storage applications. Within the Mate-
rials Project effort, dedicated applications (‘‘Apps’’)
connect intelligently the computed entries, as well as derive
important technological properties, such as (i) the identifi-
cation of intercalation and conversion electrodes and respective
voltages, (ii) the simulation of the electrochemical stability
windows of both liquid (molecules) and solid electrolytes, and
(iii) other properties. While undoubtedly a powerful ‘‘Interface
Reaction’’ App exists in Materials Project, it only identifies the
propensities of two bulk phases to mix because of chemical or
electrochemical reactions. Therefore, the ‘‘Interface Reaction’’
is to be considered as a bulk approach to tackle the reactivity of
solid/solid interfaces.

The powerful infrastructure developed by various research
teams listed in Table 1 could identify simple enough descriptors
and specific figures of merit of materials. In the case of battery
materials, the Materials Project can provide large datasets of
computed intercalation/conversion voltages, gravimetric and
volumetric capacities, electrochemical stability windows, band
gaps, and many others. The advantage is that all these thermo-
dynamic descriptors are well defined for bulk materials and
isolated molecules (for liquid electrolytes). As discussed above,
kinetic descriptors are not well defined and represent an active
topic of investigation.

Indeed, these efforts and methodologies and tools play
remarkable roles in the optimization of the compositional
features of existing materials, but, for example, entirely neglect

interfaces between the particles of the active electrode materials,
which give rise to solid–solid grain boundaries. In energy storage
devices, heterogeneous interfaces are commonplace, for example,
the interface between the active materials in the cathode electrode
and the protective coating.1,78

The generalization of these HTC methodologies to tackle the
complexity of grain boundary and interfacial structures faces
enormous challenges, which are further exacerbated by the
sheer difficulties arising from even simpler tasks. An existing
problem is the absence of a rigorous systematic nomenclature
and classification of such interfaces with simple geometrical
descriptors. In contrast, these descriptors are available for the
bulk counterpart.

Assuming such interfacial descriptors are known, the
identification of workflow strategies to compute thousands of
interfaces and grain boundaries simultaneously does not exist.
So what are the steps to be taken to compute realistic, realisable
and useful interface datasets?

If there have been only a handful of attempts towards the
computation of heterogeneous solid/solid interfaces,79 solid/
liquid interfaces80,81 in batteries are even less explored,
let alone the automation of the important steps required to
systematically simulate and predict such interfaces. Here, the
most pressing challenges relate to the description of the solvent
and the concentration of active ions (solutes) near and far from
such interfaces. This perspective focuses on the computational
modelling and understanding of these electrified interfaces.

Table 1 Selected research initiative where HTC is used to compute, archive, and analyse existing and novel materials for advanced technological
applications. The total number of entries is reported and, whenever possible, differentiated by the type of application. The column ‘‘Battery’’ highlights
whether the database infrastructure includes dedicated applications (Apps) for the prediction of battery-related quantities. The ‘‘Workflow’’ column
presents existing automation tools that pre-process, execute, and analyse each new entry. The availability of application programming interface (API) to
interface with the database is also indicated

Entries App Battery Workflow API Ref.

Materials Project – https://www.materialsproject.org/ – Provenance: USA
Total entries 711 561 Phase diagram — Fireworks YES 17, 18 and 23–25
Intercalation electrodes 4730 Reaction calculator YES Automate 26–30
Conversion electrodes 16 128 Battery explorer
Liquid electrolytes 49 705 Explore molecule YES Pymatgen 19, 31 and 32

Redox flow batteries
Bulk interfacial reactivity N.A. Interface Reaction (Bulk) YES Custodian 33

The Open Quantum Materials Database – OQMD – http://oqmd.org – Provenance: USA
Total entries 815 654 Phase diagram NO OQMD YES 34 and 35

Automatic FLOW for Materials Discovery – http://www.aflowlib.org – Provenance: USA
Total entries 3 482 348 Phase diagram (AFLOW-Chull) NO AFLOW YES 36–39

Novel Materials Discovery – NOMAD – https://nomad-lab.eu/ – Provenance: Germany/EU
Total entries 411 000 000 Artificial intelligence toolkit NO qmpy YES 40

Materials Cloud – https://www.materialscloud.org – Provenance: Switzerland/EU
Total entries 7 502 686 — YES AiiDA YES 20 and 41–43

BIG-MAP App Store – https://big-map.github.io/big-map-registry – Provenance: Denmark/EU
Total entries N.A. BattINFO YES AiiDA YES 44

DFT-Surface SimStack

ARTISTIC Computational Portal – https://www.erc-artistic.eu/computational-portal – Provenance: France/EU
Total entries 4111 (open since July 2021) Online manufacturing simulator YES ARTISTIC NO 45–51

Data explorer
INNOV
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Autonomous workflows

The implementation of autonomous workflows (WFs) closely
follows the development of techniques for the HTC of new
materials. For a completely autonomous materials discovery,
HTC has been combined with autonomous workflows.18,20,22,25

The general idea behind a workflow is that the code proceeds
through a number of necessary calculations in an automatic
way, thus concatenating the different steps of the HTC, making
‘‘rational’’ decisions during the execution of these steps, which
also includes troubleshooting for errors generated during each
step.82 Some of the most significant examples of computational
workflows established recently include the identification of
new 2D materials obtained by exfoliating 3D structures83,84 or
the identification of new catalysts.85,86 Recently, Persson et al.82

demonstrated a fully automated adsorption workflow including
exhaustive surface generation algorithms.

As summarized in Table 3, with respect to battery materials,
fully automated and reproducible computational workflows at a
density functional theory (DFT) level remain limited to several
research groups. Some recent examples of battery workflows
published in the last two years focus on calculating the properties
of solid-state ion conductors and intercalation batteries.72,87–92

Currently, stability and electronic properties are quite inexpen-
sive to compute, especially at the generalized gradient approxi-
mation (GGA) level.23,35 On the other hand, the computations of
ion migration properties remain much more time-consuming. For
this task, the former workflow87 relies on the so-called pinball
setup for performing Ab initio Molecular Dynamics (AIMD)
simulations assuming a frozen host lattice for which the charge
density of the moving ion is neglected.87,99 The latter,72 instead,
uses an accelerated version of the NEB method, which takes into

consideration the innate symmetry of a system to reduce the
number of images in the computation.100 However, many systems
do not have the needed symmetries and this methodology cannot
be used. Instead, geometric features, such as the largest-free-
sphere along a migration path, can be combined with the
workflow to identify the most promising diffusion paths to
calculate.101,102 Moreover, artificial intelligence (AI) could also
be used to accelerate the calculations of barriers for ion migration
and other properties,101,102 but we are still far from an effective
implementation of AI into general WFs.101

Several software tools exist in computational materials
science supporting researchers with the task of building WFs.
These tools comprise structure manipulation, calculation input
generation (e.g. the Atomic Simulation Environment (ASE)103

and Pymatgen),23 automatic error handling (e.g. Custodian),17 and
workflow management systems (e.g. Fireworks25 and MyQueue104).
Examples of finished workflows can, for instance, be found in the
Atomate18 package and in the Atomic Simulation Recipes
(ASR).105 Examples that contain the aforementioned software
tools in one place are AiiDA49 and AFLOW23,41,106,107 (Table 1). A
vital feature of a WF contributing directly to the automation of
this process is the implementation of WF specific error handling
techniques. We can often predict the most common causes of
failure in calculations, such as the time limit or issues inherent to
the simulation software, for example, convergence problems in
the execution of a band structure calculation. By parsing the
simulator outputs, the WF can apply corrective strategies to the
input script and resubmit the calculations until the workflow
restarts its course. The continuous improvement and develop-
ment of the tools discussed here forms a solid basis for tackling
the creation of complex workflows needed when studying battery
materials and their interfaces.

Table 2 Challenges and goals that should be overcome and achieved in future

Scale Desideratum

Atomistic Flexible ontology of the surfaces of electrodes and their interfaces
Atomistic Ontology of chemical and electrochemical reactions at interfaces
Atomistic Information about ion migration/diffusion at interfaces
Atomistic Modularity of atomistic workflows in the form of dedicated tasks for interface related properties and their interactions
Atomistic Autonomous agents driving complex closed-loop simulations based on existing workflows
Mesoscale Computational tools incorporating data arising from atomistic calculations
Mesoscale Development of multifidelity modelling workflows addressing interplays between electrochemistry, transport and mechanics at the

mesoscale
Continuum/
device

Development of multifidelity workflows simulating performance and aging at the device level

Multiscale Development of less computational and data intensive algorithms
Multiscale Data management plans for integration of multiscale computations together with experiments
Multiscale Estimation of error propagation between different time and length scales

Table 3 Various methods/programs/software that can be used to calculate the key properties for different workflow applications

Workflow application Property Method/software used Ref.

Bulk – solid Ion diffusion DFT + nudged-elastic-band method 72
Ab initio molecular dynamics simulations 87

Interface – metal/vacuum Surface energy & Wulff shapes Pymatgen/Fireworks/Materials Project 82,93,94
Interface – bulk/bulk Interfacial product Interface Reaction (Bulk) App, Table 1 33
Interface – solid/solid Interface structure Lattice matching algorithms 95–97
Electrolyte – vacuum SEI components Reaction network architecture 98
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Nevertheless, the large majority of the WFs implemented so
far mostly rely on the simulation of bulk structures, thus
leaving the interface for hands-on studies once the novel (bulk)
material has been identified/designed. As discussed in the pre-
vious section, due to the importance of interfaces in the discovery
of new batteries and comprehension of their degradation
phenomena, it is necessary to accelerate and (somehow) automate
the investigation of interfaces. In general, interfaces are much
more complex to treat than the bulk counterpart.

In addition to a significant increase of the computational
cost due to a greater number of atoms required to define an
interface compared to their bulk counterpart, we may need to
consider not only different types of interfaces but also different
compositional aspects. For example, if one studies the interface
formed between two grains in a solid electrolyte, the concen-
tration and location of impurity species in the two grains may
differ, which can largely impact the electrochemical reactions
that happen at the interface formed.108,109 Similarly, the solid/
solid interface (e.g. Fig. 2 to the right) requires the investigation
of different terminations as well as the comprehension of the
role of grain boundaries, lattice mismatch, defects and
vacancies.

Several tools and techniques have been developed to rigorously
identify homogeneous and heterogeneous interfaces (Tables 1
and 3). While constructing interfaces is surely a prerequisite,
rigorous WFs for interfaces require the definition of a new
ontology that is able to classify the type of interfaces, with their
domains, and time and length scales, which appears much more
difficult than for bulk materials.110 By creating a dictionary of

concepts, the ontology helps in defining the structure of the WF,
the steps to follow, and their concatenation. This concept is
central to accelerate the discovery of materials and is not only
limited to in silico experiments and batteries. The European
Union, through the European Materials Modelling Ontology
(EMMO),111 as well as EU-Horizon 2020 initiatives, such as the
BATTERY 2030+ and BIG-MAP with BattINFO,112,113 has
established working groups to create a common, standardized
ontology behind the study of battery materials. Additionally, data
management plans (DMPs) help project partners to keep track of
storing data. In detail, DMPs help to tie together existing data
infrastructures and ontologies as laid out recently by the partners
involved in the BIG-MAP project.114 Since data on interface
calculations are scarce, the data management plan available in
the BIG-MAP project also defines how the results of calculations
can be stored and shared across researchers. BIG-MAP enables a
systematic integration between experimental and artificial
intelligence data.

As an example, for the specific case of the Li-ion battery
anode, the interface plays a fundamental role in all the complex
phenomena involved in the evolution of the solid–electrolyte
interface (SEI) layer, from the reduction reactions of the
sacrificial electrolyte (near the electrode) happening during
the first cycles of the battery through the growth of the SEI
itself during standard operation to its aging and degradation at
the end of the battery life.115–117

From the modelling point of view, this complexity is also
connected with the dramatic increase of the computational cost
of simulations. Some of the properties accessible at the atomic

Fig. 2 Formation of different types of the interface between the bulk material (bottom) and liquid electrolyte (left) as well as solid electrolyte (right):
solid/liquid (in brown) and solid/solid (in pink) interfaces. The descriptors of their key properties are shown below each figure. The moving active ion is
shown as purple circles.
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scale level for the solid/solid and solid/liquid interfaces are
shown in Fig. 2. At this level of accuracy, an accurate description
of interfaces requires the inclusion of defects, as well as many
terminations and facets of the solid materials forming inter-
faces, which can spiral quickly into an untreatable problem. For
a realistic description of the phenomena, the electrolyte also
needs to be included together with its additives and impurities.
This can be done using implicit or explicit solvents.109 Long
molecular dynamics simulations might be needed to correctly
model the solid/electrolyte structure, which is required to predict
and proactively control the electrochemical phenomena at
the interface. This could be achieved at different levels from
large-scale molecular dynamics118 including various levels of
accuracy, e.g., reactive force field (ReaxFF) methods34,118,119 or
neural network potentials,52,120 among others.

Because of this variety of structures and scenarios, a brute
force approach does not appear feasible and, at the same time,
the implementation of WFs for interfaces able to cover all these
phenomena (and its possible integration with AI models)
appears a humongous and unmanageable task. One of the
main reasons for the success of WFs for bulk materials, i.e.,
the concatenation of the design steps, is also one of the reasons
why WFs for interfaces are so rare. Very often, we do not know
how to predict the concatenating steps in the simulation of
interfaces. This is because each step strongly depends on the
results of previous steps. As an example, to reduce the number
of expensive (although more realistic) calculations, we might
want to calculate multiple possible reactions pathways in
vacuum (i.e., without electrolyte) and for multiple facets. Only
the most promising paths on the most stable/relevant facets are
then calculated including the electrolyte (i.e., using a more
realistic model) using perhaps an Ab initio Molecular Dynamics
simulation. Depending on these results, different compositions
of the electrolyte, temperatures, etc. are the studied. Reaction
pathways are then investigated using a frozen electrolyte
approach (at a specific potential/pH), which is based on the
structures of the electrolyte studied previously.

Because of the reasons mentioned above, a unique WF will
not be sufficient to generate useful mechanistic models of
interfaces, but also too rigid and difficult to reuse for other
purposes, and may reduce the impact of our research. Instead of
developing a unique WF dedicated to interfaces, the highest impact
is assured by implementing smaller workflows, which assess single
and simpler tasks. This requires the standardization of how we are
dealing with the inputs and outputs of each (small) WF. An
example of a simpler task could be the reading of trajectory files
and extraction of total energies to more articulated outputs, which
include properties beyond thermodynamics. The overall WF has
then the key task of running a set of WFs, each corresponding to a
specific task, with consistent and standardized parameters, as well
as to deal with possible errors encountered during the execution of
the simulation. This has the advantage of making WFs interoper-
able and reusable, beyond what can be done by a comprehensive
implementation, which tackles all the tasks in a single WF.

Smaller WFs to create larger and comprehensive WFs have
been recently implemented using the Atomic Simulation

Recipes (ASR), which allows the calculation of the structures
and electronic properties of bulk materials concatenating
simple tasks in a larger WF. The ASR is currently implemented
in combination with the MyQueue workflow scheduler, which
takes advantage of the ASE library and runs the calculations
using the GPAW DFT code.52,120,121 Another example is
Atomate, which contains smaller workflows that facilitate
NEB calculations if the input structures are provided.18,121

After automating the calculations in a WF, fully autonomous
calculations can be achieved by employing agent-based optimizers.
Autonomous agents can help to more efficiently guide the search
for new materials by always ensuring to pick the next best
candidate, in contrast to choosing a predefined candidate in
systematic screening studies.18,122 In detail, Gaussian process
regression can be used to obtain a prediction together with an
associated uncertainty estimate of the desired property.102,122 This
method is an example of addressing the exploration–exploitation
problem, when faced with investigating a given structural phase
space. Running workflows autonomously has shown great promise
for optimization problems in chemistry.102,123 Software packages
containing Bayesian optimizers are available off the shelf.123,124

Therefore, the major challenge will be the implementation of
robust workflows that can provide the required properties to the
autonomous agent in a reasonable amount of time.

Multiscale modelling

From a mathematical perspective, multiscale modelling (MSM)
provides a consistent procedure to integrate and combine the
predictions generated by two or more models that describe
relevant features of the same phenomena at different temporal
and/or spatial scales.125–127 In the remainder of this perspective,
such a procedure will be referred to as a Multiscale Computational
Framework (MCF). MCFs aim to solve a system of interconnected
equations considering a well-defined hierarchy according to the
particular scales (time and space) addressed by the various
models involved.128–131 The specific mechanism employed to
provide a solution for these equations constitutes the core aspect
of a given MCF since it represents the actual mathematical
process by which each scale is properly integrated into
another one.

Two main approaches are typically considered when classi-
fying MSM methods. The first one focuses on transferring
information from one scale into another,16,132–134 which leads
to three main categories:

(1) Concurrent methods: all the scales established by various
models are employed in a simultaneous manner but over
independent sections of the physical domain of the phenom-
ena of interest.

(2) Hierarchical methods: the different scales are employed
to model the same subsection of the domain, performing
the hierarchical bridging from one scale into another with
resampling procedures.

(3) Hybrid methods: the various scales addressed by the
models considered are integrated using a combination of
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approach no. 1 and 2, as it happens, for instance, with multi-
grid and quasi-continuum methods.

The second classification is based on the algorithmic
aspects of the procedure used to solve a set of governing
equations considered by a MSM method,16,132–134 leading to
the three following classes:

(1) Sequential methods: the different models involved are
used one after the other considering the relative hierarchy that
exists among them. In other words, the linking between scales
is accomplished by processing the output of a first model to
then use it as the input for the next model and at the next scale.

(2) Iterative methods: in this case, after a series of models
have sequentially processed a particular input, the output
generated is adjusted and transformed to match the scale of
the first model in the series to then be provided again as the
input of the whole process. This is repeated until a convergence
criterion is satisfied.

(3) Tightly coupled methods: the models explicitly share a
group of common variables among them, which are then used
to transfer the information from one model to another and
provide a global solution for the system.

In terms of the algorithmic classification presented above, it
is generally assumed that iterative and tightly coupled methods
provide results with higher fidelity when compared with their
sequential counterparts given their higher degree of flexibility
to produce results matching a baseline dataset. Even though
such an assumption generally holds, more context, regarding
the specific characteristics of the problem to be solved, is
always required to select one method over the other alternatives
in a consistent manner. For instance, a tightly coupled method
will achieve good results only if the common variables that are
selected have enough predictive power and relevance within
their corresponding models, while in the case of an iterative
scheme good performance might be achieved only if the
successive application of different models leads to a refinement
of the information being processed, but always considering a
coherent convergence criterion based on a function that is
capable of quantifying the degree of refinement.

It is also important to highlight that even if iterative
methods tend to provide results with higher fidelity than
sequential ones, they might not always be the best alternative
to tackle a particular problem. In multiple real-life applications,
the access to computational resources may be seriously limited,
making the use of iterative MCFs not feasible, especially if
many iterations are needed to achieve convergence and produce
satisfactory results. In such cases, the use of a sequential or a
tightly coupled method might be the only possible alternative.

Another feature that is commonly used to describe a MCF is
given by the concept known as autonomy. For instance, when
highly complex models are incorporated within a MCF, some
user input might be necessary at the moment of bridging two
different scales in order to have a swift transition from one to
another. In such cases, the MCF will be described as a non-
autonomous one. On the other hand, if the bridging process is
carried out in a fully automated fashion, then the corres-
ponding MCF will be considered an autonomous one.

Within the context of battery research, especially in the case
of the characterization of battery interfaces, MSM plays a
crucial role.16,133–135 Several processes that are of fundamental
importance for understanding the operation of a battery, for
example, the formation of the SEI, occur at the interface
between the electrolyte and the electrodes. Such processes have
been extensively studied employing different types of MCFs to
describe the relevant phenomena considering various temporal
and spatial scales. The main MCF types that are typically
discussed in the literature16,133 concern the following:

(1) A group of sequential methods that are employed to
obtain insights on the processes governing the formation of the
SEI layer at nanoscale levels for both space (nm) and time (ns).
As discussed in the previous sections, Ab initio molecular
dynamics (AIMD) and reactive force-field molecular dynamics
are two of the most used alternatives to study the composition
and decomposition reactions related to the SEI.101,136–139 Over
larger spatial scales, classical molecular dynamics is often the
preferred method to characterize the mechanical properties
along with the transport of ions in the SEI layer.

(2) Monte Carlo methods adopt a statistical approach to
describe the formation of the SEI covering longer timescales
than MD simulations, making them the preferred alternative
when it is necessary to characterize the degradation process in
battery interfaces over longer periods of time. Monte Carlo-
based molecular dynamics (which operates in an iterative
manner) along with the kinetic Monte Carlo models140

(typically implemented in a sequential manner) represent the
most common examples.

(3) Tightly coupled methods that rely on continuum models
are commonly used to describe the growth of the SEI, along
with the ion transport that takes place in this layer, as a
function of several parameters that can be measured
experimentally or estimated through simulations.

Only recently, multiple upgraded MCFs have been intro-
duced, across different disciplines, based on the use of
machine learning, statistical techniques, and diverse data-
driven procedures.51 Device level modelling can be performed
using numerical models enabled by PyBaMM.141 This is a direct
consequence of the fact that the only way of assessing the
performance of a MCF is by directly comparing the results
produced with the available experimental data. In particular,
the widespread access to powerful computational resources has
allowed researchers to explore new data-intensive schemes
oriented towards developing better MCFs.

Experimental data represent a central element in the
characterization of MCFs. This is because it is not trivial to
understand the level of fidelity that can be achieved by a given
MCF just by knowing the specific accuracy of its underlying models
(in their respective scales). In other words, the combination of two
high-fidelity models may not necessarily lead to better results than
the combination of two low-fidelity models in the context of a MSM
problem, since many factors must be properly analysed before
concluding that. The exact procedure by which the different scales
are bridged within a MCF plays a fundamental role in this aspect.
However, this procedure is highly non-linear and usually does not
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have a clear analytical expression, meaning that the error
propagation along the different models included in a MCF is not
a straightforward process and, in many cases, is not even
controllable.

Considering the fundamental role of experimental data in
profiling the operation of MCFs, their inclusion in the
construction scheme represents an important and logical step
forward for the amelioration of MCFs. In this context, data
availability and its corresponding degree of veracity become
calibration elements that can be exploited in an automated
manner to maximize the final accuracy achieved by a given
MCF.101,142 Because of this, it is important to keep in mind that
the performance of the MCF generated by a data-driven process
will be affected by any bias observed in the calibration data.
Consequentially, it is also important to stress that external
datasets should be always used to validate the performance in a
consistent manner.

From a practical standpoint, the information contained in
an experimental dataset can be parametrized by a standard
machine learning method in terms of the different parameters
considered, within the MCF, by the various models involved at
their corresponding scales.124,143 Then, this information can
be integrated at multiple levels, simplifying the complex
calculations of a particular model, and hence leading to a global
speed-up of the whole MCF. The origin of such speed-up lies in
the fact that the trained machine is essentially operating as a
surrogate model.102,144,145

Furthermore, in some specific cases where a simple strategy
to bridge two models at different scales is not evident, more
sophisticated machine learning methods, such as neural
networks, can be used to exploit their universal function
approximation characteristics and provide a black-box-type
solution.114,132,146 This also means that the development of
autonomous MCFs, especially in those cases where the bridging
process between scales is highly complex, might not be possible
without including machine learning components.

In the future, access to big repositories of experimental data
resulting from big projects aimed at characterizing battery
interfaces will become the key element required to develop
more accurate MCFs. With huge volumes of data at the disposal
of scientists that will ideally cover most of the relevant variables
in the parameter space with a great deal of detail within the
ranges of physical interest, it would be then possible to test all
possible combinations of models and therefore predict what is
the best suited MCF to address a specific problem with a
particular description. In practical terms, this would require
profiling the interactions between different models under
various circumstances, enabling the development of an optimal
selection strategy to then provide, in an automated manner,
custom MCFs for each specific problem. Strategies of this kind
may be available when all the data generated by large-scale
battery research initiatives, such as ARTISTIC135,136,140–143 for
battery electrode manufacturing and BIG-MAP113 for battery
SEIs, are consistently integrated into massive datasets.

Another research direction to pursue in the future to
improve the global performance of the MCFs consists in

employing a hybrid approach when integrating data during
the construction process. Until now, only the experimental
data, comparable with the final output of a MCF, have been
integrated into the process and therefore related to the under-
lying multi-scale variables present in the various models
considered within a particular MCF. However, the information
contained in other experimental datasets, and even simulations,
could be also integrated into the intermediate points between
models, adding in that way more constraints to the whole
optimization process that is carried out. Moreover, the generation
of big volumes of synthetic data, using to that end the available
experimental data, simulations, and data-augmentation
techniques, could represent another worthwhile effort aimed at
improving the accuracy achieved by a MCF. In line with such a
trend, we have seen how the classic approach to study the SEI
growth, based on phase-field models that are validated and
calibrated using different types of experimental data (e.g., XPS,
FTIR, and TEM),147–149 has been progressively replaced by more
sophisticated methods where diverse experimental data are
incorporated at different scales.16

From the ideas and concepts discussed above, it is worth
noting that MCFs can vary widely in their complexity, not only
in terms of the scales covered by their constitutive models, but
also due to the specific mechanisms used to bridge these scales
and the methods selected to quantify the accuracy (among
many other elements). In Fig. 3, four diagrams representing
different MCFs are shown following an increasing degree of
complexity. Fig. 3a corresponds to the standard non-
autonomous MCF, where the bridging between scales requires
human input and the performance assessment is done at the
end of the whole process by comparing the final output of the
MCF with experimental validation data. If the scale bridging
process is automated using an analytic method, the resulting
configuration is known as an autonomous MCF and is shown
in Fig. 3b. The autonomous MCF can also be enhanced by
considering a data-driven approach for the bridging process
and the performance assessment. If there is access to enough
data to build a representative training set at different scale
levels, the bridging process can be carried out with machine
learning. Such a configuration is shown in Fig. 3c and it is
known as a data-driven autonomous MCF. With a significant
amount of data, a more sophisticated approach can be
considered, where the available data are split into two sets:
one is aimed at the training process that allows bridging scales,
while the other set is aimed at validating the intermediate
outputs produced by the MCF to quantify its intra-scale accuracy.
This configuration, known as data-driven autonomous MCF with
intermediate performance assessment, is displayed in Fig. 3d.

While MSM methods offer a path forward to overcome the
scale limitations associated with distinct length and time scale
simulation techniques, such as DFT, mesoscale, finite elements,
etc., the implementation of MSMs is aggravated by their intensive
storage and computing needs. Indeed MSM methods require
dedicated high performance computers (HPCs) with specialized
storage platforms, which clearly limits the execution of MSMs as
routine tools to carry out battery research. Recently, this issue has
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been addressed by the ARTISTIC project through its ‘‘Online
Manufacturing Simulator’’ (see Table 1),150 where a series of
multi-scale models (covering different steps of the LIB manu-
facturing process46–50 can be sequentially integrated) are available
to users interested in performing dedicated simulations from an
Internet browser in specific computational infrastructures. To our
knowledge, this initiative, where users can execute multiscale
simulations of LIBs through a graphical user interface accessible
through a browser, remains the first of its kind.

High-throughput experiments

Complementarily, there has been a recent burgeoning trend in
automated, high-throughput experimentation to close the loop
for developing next-generation batteries and battery materials.
Breakthroughs in materials synthesis, characterization, cell
fabrication, and testing are required to accelerate the discovery
of high-performance and stable battery interfaces such as the
SEI (Fig. 4).151–153

First, we discuss recent advances and opportunities in high-
throughput materials synthesis. In contrast to traditional
single-step methods, which are suitable for synthesizing
single-composition materials but are often slow and costly,154

high-throughput and combinatorial technologies offer a
promising alternative to greatly speed up the discovery and
optimization of materials.155–159 A high-throughput and
combinatorial experimentation approach is effective and
reliable to prepare a huge number of interface materials over
a broader compositional region in an appreciably short period
of time.155–158 Methods such as post-synthesis array transfer,158

thin-film combinatorial method,160,161 combinatorial robot
system, combinatorial magnetron sputtering and pulsed laser
deposition,155,162 multi-component additive screening,163 and
the sol–gel approach164 allow rapid investigation of different
SEI materials as a function of the synthesis parameters. While
examples of high-throughput experiments for the synthesis of
SEI materials have been discussed in the literature, they are still
relatively limited, and more efforts should be devoted to
enhancing their scalability. In addition, the compatibility of
the preparation route with the battery chemistry needs to be
improved and the interface materials should possess physical
and chemical structures that are relevant to the battery
chemistry. For instance, a fluoride-rich SEI of about 5 to
10 nm is highly favourable for Li-based chemistries, but a
similar physio-chemistry is not equally effective for Na-based
chemistries.60,165

Fig. 3 Schematic representation of four MCF types presented by increasing order of complexity as a function of the specific mechanisms employed to
bridge the different scales and assess the performance of the whole modelling process. In that context, the diagram shown in (a) corresponds to a non-
autonomous MCF, the one displayed in (b) represents an autonomous MCF, and the one presented in (c) corresponds to a data-driven autonomous MCF.
The last diagram, shown in (d), indicates a data-driven autonomous MCF with intermediate performance assessment which represents the most complex
MCF in terms of the elements considered.
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Notable progress has also been made recently in developing
high-throughput characterization techniques to obtain accurate
structural and elemental information of interfaces.157,162,166–168

High-throughput characterization techniques, such as X-ray
diffraction,169,170 X-ray absorption,171,172 X-ray fluorescence,173

and other transmission X-ray techniques, have recently been
employed for thin-film based research.157 While efforts have
been made to develop the aforementioned tools, they require
further development to achieve high spatial and temporal
resolution, especially for studying interfaces over a large area.
In this respect, synchrotron X-ray radiation techniques can
provide high spatial resolution and a lower signal-to-noise ratio
to meet the requirement of high-throughput experiments.157,171

For example, the technique can measure over 210 samples per
hour with an optimized time of about 15 s per sample with a
balanced signal-to-noise ratio. For efficient use of beamline
facilities and to enhance data collection capabilities, it is also
essential to develop a reproducible automated sample changer
stage. Besides, data mining and data processing can significantly
affect the efficiency of the screening process.174 Through
data processing and data mining, tangible and meaningful
information of the interfaces can easily be accessed from frag-
mented information.

In addition to structural and elemental evaluation, electro-
chemical screening of the interface materials is essential to
ensure long-term cell operation.157,162,166,175 Fabrication of a
reliable and reproducible electrochemical setup is the basic
requirement to obtain electrochemical information, especially
at the development stage of the cell. For a routine electro-
chemical test, Swagelok, sandwich, coin-cell, and split-cell
configurations are used; however, similar cell designs cannot
be adopted for high-throughput experiments. The design of the
high-throughput cell is of paramount interest and has been
widely investigated, which span from jet printed electrodes and
multi-probe automated liquid dispensing system to a sputtered
array of electrodes.158,164,176,177 Despite the complexity
associated with the fabrication route, an array of 64 cells has
been developed and tested successfully.146 The high-
throughput and combinatorial array approach can be efficiently
deployed for electrochemical screening of interface materials at
the full-cell level to expedite the screening process significantly.

However, the electrode arrays are typically limited to few tens of
cells, which might not be enough to cover a broader spectrum
of different interfaces. In addition, a transparent substrate to
support the array can be used instead, to be optically accessible
to perform various operando experiments on the array itself.

Finally, an accurate early prediction of battery cycle life is
essential for high-throughput battery testing.165,174,177–179 Yet,
it is immensely challenging due to the complex and typically
nonlinear degradation processes in batteries.180 As a result, the
available datasets to predict battery cycle life are relatively
sparse and limited. Several battery parameters, such as energy
efficiency, coulombic efficiency, and capacity degradation, are
identified to be the key to early prediction of cycle life.174,177,179

It is worth mentioning that it is the total cycle time, not the
cycle count, which contributes significantly to battery
inefficiencies or degradation.180,181 Therefore, it has become
increasingly relevant to reconsider the model parameters for
early prediction of cycle life. The machine learning models that
have been developed recently, for instance, deliberate data
generation with a data-driven modelling approach,174 are able
to predict early the cycle life satisfactorily (using the first
100 cycles). Since batteries lose their capacity over long-term
cycling due to diverse aging mechanisms, the proposed model
could be less reliable after 100 cycles. Opportunities for improving
upon the state-of-the-art prediction models include higher
accuracy, earlier prediction, real-time analysis, greater explain-
ability/interpretability, and broader application to a wide range of
battery chemistries/cycling conditions. These can potentially be
realized by incorporating advanced battery physics and domain
knowledge into hybrid machine learning models.182

The ultimate goal is the integration of all these components
into a fully autonomous and continuous process. In this
respect, we can envision interconnected robotic platforms that
link adjacent process steps and achieve a continuous flow
from synthesis to testing. Overall, the combination of high-
throughput computations, experiments and machine learning
in a closed loop can open the prospect of self-driving
laboratories for fully autonomous discovery of new battery
materials and interfaces.

Achieving an autonomous design of interfaces cannot be the
effort of a single research group, involving a single set of tools,

Fig. 4 Experimental efforts to develop next-generation batteries and battery materials with stable interfaces, ranging from materials synthesis and
characterization to cell fabrication and testing.
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e.g., a simulation package or experimental techniques. The
solution is to define new standards and protocols (input and
output data format, compatible computer server infrastructure,
databases, etc.), which could be used across different parts of the
battery value chain. An API/GUI is then the interface between the
user and the computational/experimental workflows. The user
can then perform the calculations or experiments without
knowing the details of the methodology, the specifics of each
code or the experimental technique, requesting new data when
needed. The EU-H2020 Marketplace124,143 and the BIG-MAP’s App
Store44 are initiatives following this direction. If successful, this
approach would enable an integration between computational
and experimental workflows, thus fully automating and
accelerating the discovery process.113

Conclusions

In this perspective, we have highlighted the numerous challenges
that need to be overcome before a fully autonomous high-
throughput multiscale approach for the description of energy
storage devices can be performed. For example, most of the
existing computational tools and databases target only the bulk
phase of materials and lack information regarding interfaces.
An apparent challenge is how to connect the properties accessible
at different length and time scales, as well as the propagation of
errors between scales. These aspects necessitate forging collabora-
tions between different research groups and with expertise in
different domains.

We have summarized the current stages and challenges of
high-throughput multiscale modelling to untangle the sheer
complexity of interfaces in energy storage devices. A compre-
hensive guide for the future development of this emerging field
has been outlined. A discussion of the existing toolkits and
databases that have been widely used for high-throughput
atomistic computational modelling and connected workflows
has been presented. We have reviewed the current develop-
ments of multiscale modelling and proposed four multiscale
modelling strategies with increasing complexity, starting from
a non-autonomous approach and ending with a fully autono-
mous workflow, inclusive of data-driven methods plus inter-
mediate stages of assessment. Finally, we discussed the recent
advances, opportunities, and progress in high-throughput
experiments, which include materials synthesis, structural
and elemental evaluation, electrochemical screening of inter-
face materials, as well as early predictions of battery cycle life.

Our analysis also provides guidelines for the development of fully
autonomous processes for developing the high-throughput multi-
scale modelling of battery interfaces. Altogether these strategies
contribute to pave ways to significantly improve the rational design
of high-performance batteries and other energy storage devices.
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