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Abstract
Ion transport in materials is routinely probed through several experimental techniques, which
introduce variability in reported ionic diffusivities and conductivities. The computational
prediction of ionic diffusivities and conductivities helps in identifying good ionic conductors,
and suitable solid electrolytes (SEs), thus establishing firm structure-property relationships.
Machine-learned potentials are an attractive strategy to extend the capabilities of accurate ab
initio molecular dynamics (AIMD) to longer simulations for larger systems, enabling the study
of ion transport at lower temperatures. However, machine-learned potentials being in their
infancy, critical assessments of their predicting capabilities are rare. Here, we identified the
main factors controlling the quality of a machine-learning potential based on the moment tensor
potential formulation, when applied to the properties of ion transport in ionic conductors, such
as SEs. Our results underline the importance of high-quality and diverse training sets required to
fit moment tensor potentials. We highlight the importance of considering intrinsic defects
which may occur in SEs. We demonstrate the limitations posed by short-timescale and
high-temperature AIMD simulations to predict the room-temperature properties of materials.

Supplementary material for this article is available online

Keywords: solid electrolytes, solid-state batteries, lithium-ion batteries, ionic conductors,
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1. Introduction

Rechargeable lithium (Li)-ion batteries are widely used in
portable electronics and are seeing applications in powering
electric vehicles. To be competitive with internal combustion
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engines, batteries for automotive applications must display
energy densities >350 Wh kg−1 and cost below $100 kWh−1

[1]. One of the major safety concerns of commercial Li-ion
batteries arises from the flammable nature of the liquid organic
electrolytes. Nonflammable solid electrolytes (SEs) are prom-
ising alternatives to mitigate safety issues [2, 3].

Typically, SE materials show room-temperature ionic con-
ductivities that are comparable with liquid electrolytes
[2–11]. Therefore, identifying new structural motifs in SEs
enabling superior ionic conductivities has been one of the
major thrusts of the battery community. Experimentally, the
diffusion of ions (Li+/Na+) in inorganic materials can be
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Future perspectives
One of the major challenges in all-solid-state batteries is the
incompatibility of the interface between the solid electrolytes
(SEs) and the electrode materials, which leads to the forma-
tion of resistive or reactive decomposition products during bat-
tery cycling. These reactions drive the formation of solid–solid
interphases, which may be highly resistive to ionic transport with
continuous thickness growth, thus contributing to the increased
impedance associated to the transport of Li-ions across the inter-
face. Thus, much-needed work is to understand the Li-ion trans-
port across bulk materials that may compose these complicated
heterogeneous multiphased electrode–electrolyte interfaces. Sim-
ulation techniques set a firm link between phenomena occurring at
the atomic scale and macroscopic observations of energy materi-
als, i.e. SEs and electrodes. Machine-learning molecular dynam-
ics (MD) are orders of magnitude computationally less expens-
ive compared to ab initioMD but provide comparable accuracies.
Machine-learning MD simulations based on the moment tensor
potentials method represent a powerful methodology to reveal the
complex nature of ion transport in SEs and their decomposition
products formed upon contact with the electrode materials.

assessed by several electrochemical techniques, such as gal-
vanostatic or potentiostatic intermittent titration techniques
[12, 13] as well as electrochemical impedance spectroscopy
[12, 14]. Solid-state nuclear magnetic resonance [15], and
quasi-elastic neutron scattering [16, 17] are also used to meas-
ure ion diffusivities in materials. In principle, the ionic dif-
fusivities measured by different techniques should be similar.
However, the yielded values could differ by more than two
orders of magnitude from different experimental techniques
[12, 18–20]. Therefore, it is important to provide accurate cal-
culations and reveal the ionic transport mechanisms by using
computational approaches. Recently, Deng et al [21] have
showcased extensive simulation of ion-transport in a popu-
lar SE, Na1+xZr2SixP3−xO12 with kinetic Monte Carlo (kMC)
bearing the accuracy of first-principles calculations, which can
improve upon the obvious limits of ab initiomolecular dynam-
ics (AIMD) and classical molecular dynamics (MD) simula-
tions. Albeit kMC is a powerful technique, fitting accurate lat-
tice Hamiltonians is not straightforward.

Theoretical tools, such as AIMD, have been used extens-
ively to describe ion transport in functional materials [22–26].
However, due to their high computational costs, AIMD sim-
ulations can treat at most a few hundred of atoms approach-
ing limited simulation timescales of hundreds of picoseconds
(ps), which extensively limits the required diffusion statistics
associated to ion motion in materials. An alternative is clas-
sical MD simulations based on empirical force fields (FFs)
which can treat much larger systems (thousands of atoms),
and extend to timescales of nanoseconds (ns). FFs are usually
derived from rigorous physical models and can be used across
systems with similar chemical constituents, but their accur-
acy is also limited by their functional forms. Furthermore, the
derivation of FFs is not trivial, and in some cases (e.g. charge
optimizedmany body potential and ReaxFF) hundreds of para-
meters need to be determined [27–29].

Recently, machine-learned potentials (MLPs) have attrac-
ted attention as an alternative to empirical FFs [30–33].
In contrast to empirical FFs, current MLPs are rarely

physics-based, thus calling into question their transferability
across similar chemical systems (e.g. different polymorphs
of the same material) [30]. It has been shown that most
MLPs can achieve superior numerical accuracy than FFs
[30, 31, 34–36]. In particular, the moment tensor potentials
(MTPs) have shown an excellent balance between model
accuracy and computational efficiency [30, 31].

Usually, the fitting of MTPs requires the construction of
training sets and the optimization of several hyper-parameters,
using which the ‘learning’ of the FF is achieved. Training
sets can be constructed using structures from ab initio cal-
culations, whose quality will primarily affect the accuracy
of MTPs [31–33].

In this work, we performed AIMD simulations for generat-
ing training sets for the MTPs and explored various strategies
or variables for training the MTPs. Firstly, different AIMD
training sets were generated by considering several compu-
tational and physical variables. An immediate computational
variable is the density functional theory (DFT) exchange
and correlation (XC) functional used for the AIMD simula-
tions, such as the standard generalized gradient approxima-
tion (GGA) (details in section 2) [37]. Using a van der Waals
(vdW)-corrected XC functional, Qi et al [32] demonstrated the
predicted activation energies and ionic conductivities of three
‘compact’ lithium superionic conductors, i.e. Li0.33La0.56TiO3,
Li3YCl6 and Li7P3S11 are in good agreement with existing
experimental values. Other computational variables are the
AIMD simulation time which affects the size of the training
sets and the simulation temperatures at which AIMD simu-
lations were performed. The defect types present in the SEs
and their concentrations are considered as physical variables
Secondly, several MTP fitting parameters directly affect the
quality of MTPs and are explained in detail in section 3.

The generated training sets were subsequently used to
fit MTPs, and large-scale MD simulations were performed
to predict the activation energies (Ea), ionic diffusivities,
and conductivities (σ) of three topical superionic conductors,
i.e. two argyrodites Li6PS5Cl and Li6PS5I and the α-phase
tetragonal Na3PS4.

We find that for argyrodite Li6PS5Cl, Ea predicted by MTP
fitted with training data produced by a conventional GGA XC
functional (PBEsol, see section 2) achieved the best agree-
ment with existing experiments [38]. The estimated values of
room temperature conductivity σRT fromMTPs fitted with dif-
ferent strategies are also in the range of the experimentally
reported values [5, 38–41]. Our investigation demonstrated
that including a sufficiently diverse set of structures bear-
ing different local environments appears important to achieve
accurate simulations.

2. Methodology

2.1. AIMD for training sets

We used the cubic (with a F4̄3m space group) structure of
argyrodites Li6PS5X (X = Cl, I), containing 52 atoms for
each structure. The initial structures were taken from Kraft
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et al [38]. We enumerated all symmetrically distinct order-
ings of the primitive cell (13 atoms). In total 26 structures
were obtained for Li6PS5Cl/Li6PS5I and their total energies
were evaluated using single-point DFT calculations. The low-
est energy structures were fully relaxed using DFT and then
used for further AIMD simulations.

In the DFT calculations, wavefunctions were described by
expanding the valence electrons with plane waves together
with projected augmented wave potentials (PAWs) for core
electrons, as implemented in the Vienna Ab-initio Simulation
Package (VASP) [42–44]. In the PAWs, the valence electron
configurations for each element were set as follows: Li: s1p0,
Na: s1p0, P: s2p3, S: s2p4, Cl: s2p5 and I: s2p5. A plane wave
energy cutoff of 520 eV and a k-point mesh with a k-point
density of 25 Å−1 were used.

Preliminary geometry optimizations of the known struc-
tures of superionic conductors were achieved using the
MITRelaxSet set implemented in pymatgen [45]. The total
energy of each structure was converged to within 10−5 eV/cell,
and the geometry optimizations were assumed to converge
when the change in total energy between two subsequent ionic
steps was below 10−4 eV.

After geometry optimizations, AIMD simulations to gen-
erate the training sets for the fitting of MTPs were performed
using VASP. Here, the plane wave energy cutoff was reduced
to 400 eV, and the total energy was integrated at the Γ-point.
The canonical ensemble (i.e. at fixed number of particles,
volume, and temperatures, NVT) was achieved using Nosé–
Hoover thermostat and a timestep of 2 fs [46, 47].

We tested several XC functionals while performing AIMD
simulations. The ‘standard’ GGA as parameterized by Perdew,
Burke, and Ernzerhof (PBE) [37] and its revision for solids
PBEsol [48]. optB88 van der Waals (vdW) [49] DFT func-
tional was used in a recent study [32] to calculate ion transport
properties in Li-based superionic conductors. The strongly
constrained and appropriately normed (SCAN) [50] is a recent
meta-generalized-gradient approximation and was shown to
be accurate in the prediction of geometries, formation ener-
gies, andmigration barriers of diversely bondedmolecules and
materials (including covalent, metallic, ionic, hydrogen and
vdW bonds) [51–53] SCAN + rVV10 [54] is a versatile vdW
density functional that combines the SCAN meta-GGA XC
functional with the rVV10 non-local vdW correlation func-
tional. R2SCAN [55] is a regularized-restored SCAN func-
tional that significantly improves the numerical efficiency and
accuracy under low-cost computational settings as compared
to its parent SCAN functional.

For argyrodites Li6PS5X (X= Cl, I), we performed AIMD
simulations at 500 K, 1000 K, 1500 K, and 2000 K, each for
8 ps (preceded by a temperature ramping of 2 ps), which in
total resulted in training sets containing 16 000 snapshots. To
test the strategy ‘Simulation time’ for argyrodites, we per-
formed AIMD for 4 ps at each temperature and included
8000 snapshots in the training set. While for α-Na3PS4, the
temperatures chosen ranged from 400 K to 1600 K with a
step of 400 K. The default training sets for Na3PS4 contain
16 000 configurations, 4000 for each temperature. To test the

strategy ‘Simulation time’ for Na3PS4, we performed AIMD
for 40 ps at each temperature and included 80 000 snapshots
in the training set.

To study the defect-mediated diffusion events in Li6PS5Cl,
four types of defects were considered, i.e. Li interstitials Lii,
which are the intrinsic defects in argyrodites, antisites ClS and
SCl, and Li vacancies VLi. For antisites ClS, from the conven-
tional cell, we replaced two S atoms with two Cl atoms (2%
defect concentration), and two Li atoms were removed from
the cubic unit cell to maintain charge neutrality. In the case of
the SCl antisite defect, starting from the conventional cell, we
replaced two Cl atoms with two S atoms (50% defect concen-
tration), and two Li atoms were added in the cubic unit cell
to maintain charge neutrality. In the case of VLi, a 2× 1× 1
supercell containing one Li+ vacancy was created, corres-
ponding to a vacancy concentration of∼2%. Since limited dif-
fusion events were found in the pristine tetragonal α-Na3PS4,
we created a 2× 2× 2 supercell model containing one Na+

vacancy, corresponding to a concentration of 2%. For both,
Li6PS5X (X = Cl, I) and Na3PS4, Li+/Na+ vacancies were
introduced by removing Li/Na atoms and compensating with
a uniform (jellium) charge background.

2.2. Moment tensor potential-molecular dynamics

MTPs of the superionic conductors investigated in this work
were developed using the machine learning of the inter-atomic
potentials package [33]. The MTP-MD simulations were per-
formed using LAMMPS [56]. Nosé–Hoover thermostat was
used to simulate the canonical ensemble (NVT) [46, 47]. Long
MD simulations were carried out for at least 10 ns with a short
timestep of 1 fs, preceded by a temperature ramping for 10 ps
(to reach each target temperature) and an equilibration period
of 1 ns. To investigate the effect of the concentration of defects
on the ion diffusion of Li6PS5Cl, we created supercells with
different sizes.

Table 1 details the structure models investigated. In the case
of ClS Concentration-1, we replaced two S atoms with two Cl
atoms, and two Li atoms were removed to keep charge neut-
ral in the conventional cell (1 × 1 × 1). For other cases, we
replaced one S atom with one Cl atom, and one Li atom was
removed to keep the charge neutral in the respective cell sizes.
For SCl, we only considered a defect concentration of 1.64 ×
1019 cm−3, where we replaced one Cl atom with one S atom
and added a Li atom to keep charge neutral in a 4 × 4 × 4
supercell (table 1). For VLi+, we removed one Li atom as the
size of the supercell model was increased.

2.3. Analysis of ionic transport in SEs

2.3.1. Diffusivity and conductivity. The tracer diffusivity D∗

and conductivity σ of equations (1)–(3) were used to quantify
ionic transport in the superionic conductors.

D∗(T) = lim
t→∞

1
2dt

1
N

N∑
i=1

⟨|ri(t)− ri(0)|2⟩ (1)
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Table 1. Different model structures to investigate the effect of
defect concentrations Li+ in Li6PS5Cl. Defect concentrations are
given in cm−3.

Model name Defect Concentration Cell size

Concentration-1 ClS 2.09 × 1021 1 × 1 × 1
Concentration-2 ClS 1.31 × 1020 2 × 2 × 2
Concentration-3 ClS 1.64 × 1019 4 × 4 × 4
Concentration-4 ClS 4.86 × 1018 6 × 6 × 6
Concentration-5 ClS 2.05 × 1018 8 × 8 × 8
Concentration-6 ClS 1.05 × 1018 10 × 10 × 10
— SCl 1.64 × 1019 4 × 4 × 4
Concentration-1 VLi 5.24 × 1020 2 × 1 × 1
Concentration-2 VLi 1.31 × 1020 2 × 2 × 2
Concentration-3 VLi 1.64 × 1019 4 × 4 × 4
Concentration-4 VLi 4.86 × 1018 6 × 6 × 6
Concentration-5 VLi 2.05 × 1018 8 × 8 × 8
Concentration-6 VLi 1.05 × 1018 10 × 10 × 10

D∗(T) = D0 exp

(
− Ea

kBT

)
(2)

where ri(t) is the displacement of the ith ion at time t, N is the
number of diffusing ions, t is time and d is the dimensionality
of the system. Ea is the Li/Na ion migration energy and can be
derived from the Arrhenius relation of equation (2), D0 is the
ion diffusivity at infinite temperature and kB is the Boltzmann
constant. The ionic conductivity at temperature T is obtained
from the Nernst–Einstein equation (3).

σ(T) =
ρz2F 2

RT
D∗(T) (3)

where ρ is the molar density of diffusing ions in the unit cell,
z = 1 is the charge of Li and Na ions, and F and R are the
Faraday constant and gas constant, respectively.

2.3.2. The distinct van Hove correlation function. The dis-
tinct part of the van Hove correlation functions (Gd) of super-
ionic conductors was calculated by using the trajectories from
MTP-MD simulations as shown in equation (4).

Gd(r, t) =
1

4πr2ρNd

⟨
Nd∑
i̸=j

δ(r− |ri(0)− rj(t)|)

⟩
(4)

where ri(0) is the position of the ith ion at initial time t = 0,
rj(t) is the position of the jth ion at time t, Nd is the number
of diffusing Li/Na ions in the unit cell, and r is the radial dis-
tance between ions. The average number density ρ is used to
normalize Gd so that Gd → 1 when r→ 1.

2.3.3. Generalized phonon density of states. To calculate
the partial atomistic vibrational density of states, a Fourier
transform of the velocity autocorrelation function [57] of the
trajectories of individual atoms (Li, Na, P, S, Cl, I) was per-
formed. The partial vibrational density of states was then

neutron-weighted to obtain the generalized phonon density of
states (GDOS). GDOS involves a weighting of the scattering
species with scattering powers σ/M, where σ is the neutron
scattering cross section in barn (1 barn ∼10−24 cm2) and M
is mass of an ion in the atomic mass unit or amu (1 amu
∼0.66× 10−24 g). The scattering powers in barn·amu−1 of
Li, Na, P, S, and Cl, I used were 0.197, 0.143, 0.107,
0.032, 0.474, and 0.030, respectively.

3. Results

3.1. Strategies for constructing moment tensor potentials

Figure 1 illustrates the strategies and the variables associated
with fitting MTPs for ‘large’ scale MD simulations.

In MTP, the training sets are usually derived from AIMD
simulations, and their qualities largely depend on several com-
putational and physical variables. Some important computa-
tional variables are (a) the choice of DFT XC functional, (b)
the simulation temperatures (controlling the probabilities of
migration events) at which the AIMDs are executed, and (c)
the simulation time of each AIMD, relating to the size of train-
ing sets. Different types of defects existing in the ionic con-
ductors discussed above have been considered important phys-
ical variables. The computational variables are explained in
greater detail in the Methods section.

Once the preliminary AIMD simulations are performed
(step no. 1 in figure 1) the fitting of the MTP potential starts.
MTPs are fitted following the force-matching minimization
strategy of Ercolessi and Adams [58], which minimizes the
residual between the forces predicted by AIMD simulations
and those obtained from a trained MTP. At the stage of MTP
training, several parameters need to be chosen carefully. The
levmax is used to determine the completeness of the basis set
defining the functional form of MTP [33]. Using too large
values of levmax can easily lead to overfitting. For example,
while training an MTP for argyrodite and Na3PS4, a levmax of
12 provides adequate levels of fitting and validation errors in
energy (<15 meV atom−1) and forces (<140 meV Å−1), as
summarized in tables S1–S4 of the supplementary informa-
tion (SI). Another important parameter required in the fitting
of MTPs is the radius cutoff (Rcut) used to ensure the smooth
behavior of MTPs when atoms leave or enter the interaction
neighborhood [33]. Here, we chose Rcut to be 5 Å, which has
been used in previous reports [32, 33, 59–61]. While fitting
the MTPs, a reasonable choice of weights associated to the
energy and force terms is also needed. In this work, we used
a ratio of weights of 10:1 for energies to forces, similar to
our previous work [61]. The original training set containing
AIMD snapshots is randomly split into two parts- a ‘train-
ing set’ and a ‘testing set’ with a ratio of 90:10. The MTPs
are then trained on the ‘training sets’ and the ‘testing sets’ are
used to validate the MTPs.

The fitted MTPs were then used to perform large-scale MD
simulations. To evaluate the performance of the MTPs gen-
erated using different strategies, we compare the predicted
tracer diffusivities (D∗), ion conductivities (σ), and activation
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Figure 1. Strategies for fitting MTPs. In block no. 1, the computational variables defining the MTP training set of AIMD simulations
include the DFT XC functional, the simulation temperature, and time, respectively. Different types of point defects can be introduced in the
AIMD training set, which are considered physical variables. In block no. 2 parameters tuned during the training of the MTP potential are
shown. Block no. 3 deals with the execution of long and large-scale MD using trained MTPs and the validation of the results.

energies (Ea) of superionic conductors against experimentally
reported values.

3.2. Evaluation of MTPs

The crystal structures of the superionic conductors considered
in this work are shown in figure S1 of the SI. In figure S2
and table S5, we show the predicted lattice parameters and
volumes of the superionic conductors by using different DFT
XC functionals. For argyrodite Li6PS5Cl, the volume pre-
dicted by optB88 functional shows the smallest discrepancy
(∼0.04%) concerning the experimental data [38, 62]. In con-
trast, the use of meta-GGAXC functionals, in this case, SCAN
appears to overestimate the volume of Li6PS5Cl (∼10.3%),
and the predicted error decreased to ∼8.4% with the addi-
tion of vdW interactions. Unsurprisingly, the performance of
R2SCAN (∼10.2%) appears similar to that of SCAN. In the
case of Li6PS5I, optB88 achieved the best agreement with the
experimental value, with a slight overestimation of ∼0.15%.

For α-phase tetragonal Na3PS4 (space group: P4̄21c),
PBE shows the best agreement (∼1.09%), whereas
optB88 and PBEsol underestimated the volume by
∼3.03% and ∼4.22%, respectively.

We first look at how the training sets generated using
different DFT XC functionals affect the predictive accuracy
of MTPs in evaluating the ion transport properties in the
superionic conductors. For clarity, we will label the MTPs
fitted using different DFT XC functionals as MTP@PBE,
MTP@PBEsol, MTP@optB88, etc.

Figure 2 shows the variability of the activation energies
Ea obtained via MTPs trained with different computational
variables (see figure 1). In figure 2(a), Ea of Li6PS5Cl pre-
dicted using MTP@PBEsol is ∼0.42 eV, exhibiting best
agreement with the experimental value reported by Kraft
et al (∼0.45 eV) [38]. While Ea predicted using MTP@PBE,
MTP@optB88 and MTP@SCAN + rvv10 assume similar
values in the range of ∼0.37–0.39 eV. The predicted Ea

decreased by ∼30–50 meV when the lattice parameters of the
simulations are held to experimental values (see hatched bars
in figure 2(a) for PBE and PBEsol) [38].

The experimentally reported ionic conductivities of
Li6PS5Cl at room temperature range from 0.01 mS cm−1

to a few mS cm−1 [5, 38–41]. From our MTP-MD simula-
tions (table S6 of SI), σRT predicted by MTP@PBEsol was
the lowest (∼0.070 mS cm−1), while σRT predicted by other
MTPs (trained with different DFT XC functional) assumed
higher values (∼0.145–0.24 mS cm−1). Ea and σRT pre-
dicted from MTPs fitted using different DFT XC function-
als for Li6PS5I are shown in table S7 of SI. The predicted
values of Ea are higher than the experimental value [38] by
more than ∼150 meV (figure S3(a)). The estimated values
of σRT are in the order of 10−5–10−4 mS cm−1, which is
nearly one order of magnitude lower than the experimentally
reported values (table S7) [38].

In the case of the pristine (without native defects, e.g. Na
vacancies) tetragonal α-Na3PS4, we found limited diffusion
events due to which it is hard to derive accurate values of dif-
fusivity from the computed mean square displacement (MSD)
plots. Thus we studied the Na+ diffusion in Na3PS4, contain-
ing ∼2% of Na+ vacancies. The predicted values of Ea by
MTPs fitted with different functionals are quite similar (see
figure S4 zoom-in plot) but are lower than the experimental
data by more than 0.2 eV (figure S4). This overestimation of
Na-ion diffusivities is amplified even further in the Na-ion
conductivities (σ), which are three orders of magnitude higher
than the experimental value (table S8) [63].

Besides the choice of DFT XC functional, it is also import-
ant to investigate the effects of other computational vari-
ables, such as the simulation temperatures and timescales used
to generate the AIMD training sets. To evaluate these vari-
ables, we keep the DFT XC functional as PBEsol. We discuss
the effect of simulation temperatures on MTP predictions.
Our default training sets include snapshots generated from
AIMD simulations performed at elevated temperatures, i.e.
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Figure 2. Activation energies (Ea) derived from Arrhenius plots with the estimated standard errors (stderr) for Li6PS5Cl using MTPs
trained with different strategies (see main text). (a) The computational variable considered is the DFT XC functional. In panel (b), the
computational variables considered are the simulation temperature and the simulation time. For results shown in panel (b), the DFT XC
functional is PBEsol. ‘Reference’ in panel (b) is the value of Ea obtained with the DFT XC PBEsol (and also reported in panel (a)).

500 K, 1000 K, 1500 K, and 2000 K for argyrodites; and
400 K, 800 K, 1200 K, and 1600 K for Na3PS4. In the
case of argyrodites, we removed the low-temperature snap-
shots (500 K) from the training sets, and the fitted MTPs
are labeled as high-T-MTP. For both Li6PS5Cl and Li6PS5I,
the predicted values of Ea using high-T-MTP training sets
are lower than the results from MTP@PBEsol by ∼70 meV
(figure 2(b) and table S6 in SI) and ∼30 meV (figure S3(b)
and table S7 in SI) respectively. A decrease in values of Ea

may also lead to an overestimation of the ionic conductivit-
ies σRT (tables S6 and S7). For Na3PS4, since the predicted
Ea were lower than the experimental values, regardless of the
XC functional used, we removed the high-temperature snap-
shots (1600 K) from the training sets, to examine if the dis-
crepancy between the predicted and experimentally reported
values of Ea could be reconciled. Unfortunately, the pre-
dicted Ea and σRT appear similar to the values obtained using
MTP@PBEsol (table S8).

We then consider the effect of the timescale of AIMD sim-
ulations on the accuracy of MTPs predictions. Longer AIMD
simulations include additional trajectories in the training sets,
which in turn lead to increased computational costs, but also
a richer dataset for the training procedure. For both argyrod-
ites and Na3PS4, the default training sets include 16 000
snapshots (4000 snapshots for each temperature, see Meth-
ods section). For argyrodites, given that the Ea predicted by
MTP fitted using the default training sets show reasonable
agreement with experimental values, we investigated whether
the size of the training sets can be further reduced, while
still maintaining the predictive capabilities of the MTP. We
used training sets containing 8000 snapshots (2000 for each

temperature). The predicted values of Ea appear remarkably
different from the experimental values (figure 2(b) and table
S6 for Li6PS5Cl, figure S3 and table S7 for Li6PS5I), indicat-
ing that a reduction in the size of the training sets cannot guar-
antee similar accuracy in the prediction of Ea. In the case of
Na3PS4, we performed appreciably longer AIMD simulations
and included more snapshots in the training sets (∼80 000 in
total, see Methods section). However, using enlarged train-
ing sets, no significant change was observed in the predicted
Ea, with the new predictions falling within the error bar of
MTP@PBEsol (see figure S4).

The calculated tracer diffusivities D∗, and conductivities σ
of Li+ in argyrodite Li6PS5Cl are shown in figure 3. The val-
ues of Ea and σRT are summarized in table S6.

Values of Ea are derived from the Arrhenius plots, whereas
room temperature conductivities (σRT) are extrapolated from
high-temperature data. At low temperatures the number of rare
events leading to Li+ migration is scarce, and the small time
propagation (hundreds of ns) of our MTPs is not sufficient to
extract (or extrapolate) reliable low-temperature conductivit-
ies and diffusivities [21]. At low temperatures, the number of
rare events leading to Li+ migration may be limited, which
makes the direct calculation of reliable low-temperature dif-
fusivities and conductivities difficult.

3.3. Effect of native defects on ionic diffusivity

Native defects exist in all the materials with sizeable effects
on the intrinsic electronic and the ionic conductivities of SEs
[64–66]. However, experimentally it remains a major chal-
lenge to determine the defect types and their concentrations.
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Figure 3. Computed properties of Li+ transport properties of
argyrodite Li6PS5Cl using MTPs trained by changing different
computational variables, as illustrated in figure 1. Only selected
temperatures are shown. Panels (a) show the Li+ diffusivity (in
cm2·s−1) and (b) the Li+ conductivity (in S·K·cm−1). Exp.
represents data obtained on simulations performed at the
experimental volume. Dashed lines are Arrhenius fits, whose slopes
give the activation energy.

A recent study by Gorai et al [64] investigated the chem-
istry of point defects (vacancies, antisites, and interstitials) in
argyrodites Li6PS5X (X = Cl and I) and Na3PS4, by employ-
ing a combination of DFT and semi-empirical models. The
derived electronic conductivities of the superionic conductors
achieved quantitative agreements with the experiments [64].

Here, we further investigate the effects of these point
defects on the ion transport of argyrodite Li6PS5Cl. Since
the reported defect concentrations are dilute [64], sufficiently
large supercell models are required, which may be inaccess-
ible via AIMD simulations.WithMTPs, we can perform large-
scale simulations including thousands of atoms, thus capturing
scenarios of the dilute defect concentrations. Note, the defect
concentrations used in AIMD simulations are much higher
than those used in the MTP-MD. The details of the supercell
models used in both AIMD and MTP-MD can be found in the
Methods section.

Argyrodite Li6PS5Cl shows intrinsic Li interstitial defects,
and we analyzed their activation energies in figure 2. To distin-
guish from other types of defects, we use a simplified Kröger–
Vink notation with Li interstitials indicated as Lii, anion anti-
sites as SCl and ClS, and Li+ vacancies as VLi [64]. The MTPs
fitted using training sets generated fromAIMD simulations for
structures containing specific types of defects, are labeled as
MTPLii , MTPSCl , MTPClS , and MTPVLi , respectively. In these
simulations, the DFT XC functional used is PBEsol.

The calculated Li+ diffusivities and conductivities of
Li6PS5Cl containing different types of point defects in the
limit of dilute concentration are shown in figure S6. The activ-
ation energies derived from the Arrhenius plots are shown in
table S9. We find that the predicted Ea of Lii, ClS and VLi are
similar and are close to the experimental value reported by
Kraft et al [38], suggesting the coexistence of these defects in
the material together with the intrinsic interstitial defects. The
estimated σRT of these defects are also in the same order of
magnitude (table S9). To investigate whether the MTP trained
for Li6PS5Cl with only intrinsic defects Lii (MTPLii) can be
extended to other defect types, we performed large-scale MD
simulations for Li6PS5Cl models containing SCl, ClS and VLi,
as shown in figure 4.

In the case of ClS and VLi, the predicted Ea using MTPLii is
similar to that from MTPClS and MTPVLi , respectively. In con-
trast, by introducing SCl in Li6PS5Cl, Ea predicted by MTPLii
and MTPSCl show appreciable discrepancy of ∼0.1 eV.

To further determine the effect of the defect concentra-
tions, we performed MTP-MD for VLi and ClS at different
defect concentrations (table 1) using both MTPLii , and MTPs
fitted using training sets containing VLi and ClS, respect-
ively. The calculated Li+ diffusivities and conductivities are
shown in figures S7–S10 and tables S10–S11 of the SI. The
derived Ea as a function of defect concentrations is shown
in figure S5. In the case of VLi, the dilute regime spans
from 1.31× 1020 cm−3 to 1.05× 1018 cm−3, consistent with
the fact that Li+ vacancies are among the lowest formation
energy defects in Li6PS5Cl [64]. While for ClS, the dilute
regime starts from 1.64× 1019 cm−3, similar to estimates by
Gorai et al (1.9× 1019 cm−3) [64].

3.4. Lattice dynamics of Li6PS5Cl and correlation effects

It is of great interest to understand the origin of ion migration
in ionic conductors. Experimentally, the ion dynamics in crys-
tals can be revealed from techniques, such as inelastic neutron
scattering spectroscopy (INS), and complementary to themore

7
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Figure 4. Activation energies (Ea) with the estimated standard
errors for Li6PS5Cl containing different types of defects: Li
interstitials Lii, antisite defects ClS and SCl, and Li vacancies VLi.
Lii are the intrinsic defect types of Li6PS5Cl. The DFT XC
functional used is PBEsol during the AIMD training. The MTPs
used are trained on AIMD models of Li6PS5Cl containing Lii or as
indicated by the defect types on the x-axis. The defect
concentrations for each type during MTP-MD simulations are taken
from [64]. Exp. is for the experimental data, and others in the legend
refers to other defects.

common Raman spectroscopy. It is established that INS is a
more sensitive technique than Raman spectroscopy for detect-
ing lower energy modes [62, 67]. INS measurements can be
reproduced and predicted by appropriately weighted phonon
generalized density of states (GDOS) [62]. The accessibility
of longMD trajectories viaMTP-based simulations enables us
to predict the GDOS, and thus establish a robust link between
structure-property relationship [62].

Here, we calculated the GDOS of argyrodites Li6PS5X
(X = Cl, I) and α-Na3PS4 at different temperatures by taking
the Fourier transform of the velocity autocorrelation functions
[57], as obtained from our MTPPBEsol-MD simulations (see
Methods). GDOSs extracted from MD simulations contain
anharmonic effects, which often involve vibrational modes of
species with different masses. However, this analysis is unable
to probe into the type of vibrational modes, which can be
accessed through DFT simulations or by direct fingerprinting
of Raman spectra.

The calculated GDOS of Li6PS5Cl at 300 K and 500 K
are shown in figure 5. The Li partial GDOSs contribute to the
entire energy range (0–200meV), while Cl atoms show contri-
butions to the peak at ∼15 meV. From the zoom-in plots, the
P and S partial GDOS show similar features (figure S13 of SI)

Figure 5. Generalized phonon density of states (GDOS) of Li
atoms in argyrodites Li6PS5Cl calculated from MTP-MD
simulations at (a) 300 K and (b) 500 K.

which are assigned to the PS 3−
4 units. Peaks at ∼60 meV are

the result of the PS 3−
4 motion. We observe that a temperature

increase promotes the broadening of GDOS and an increase in
the height of the low-energy peaks. This indicates an enhance-
ment of the Li+ motions at higher temperatures. The peak
positions did not show a significant variation at elevated tem-
peratures, which is an indication of the intrinsic softening of
Li6PS5Cl [68]. Our results are both qualitatively and quantit-
atively consistent with recent INSmeasurements andMD sim-
ulations on other thiophosphate systems [68].

The calculated GDOS of Li6PS5I at 300 K and 500 K are
shown in figures S14 and S15, exhibiting similar features to
the GDOS of Li6PS5Cl. The GDOS of α-Na3PS4 from our
MTP-MD simulations (figure S16) also agree with previous
INS measurements and AIMD simulations [62].

The van Hove correlation function is a useful analysis for
investigating the correlated motions of ions in crystalline ion
conductors [69, 70], which can be divided into the self part
(GS) and distinct part (Gd) [69, 70]. In particular, Gd is the
probability density of finding at time t a different moving ion
at a distance r from a reference ion that was initially located

8
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Figure 6. The distinct part of the van Hove correlation function
Gd calculated from MTP-MD simulations for (a) Li6PS5Cl and
(b) Li6PS5I at 500 K.

at the origin at time t = 0. Thus, Gd can access the collective
dynamics of the moving ions. The calculated Gd for Li+ in
argyrodites Li6PS5X (X=Cl, I) andNa+ in Na3PS4 are shown
in figures 6 and S17–18, respectively.

In figures 6(a) and (b), we find large amplitudes of Gd for
r < 2 Å, which is a strong indication of collective motions
in both Li6PS5Cl and Li6PS5I. By inspecting the initial 10 ps
of the MD simulations (see figure S17 ), a larger peak of Gd

was identified in Li6PS5Cl, but not in Li6PS5I. This suggests
that the extent of collective motions of Li+ are stronger in
Li6PS5Cl than in Li6PS5I, which explains faster Li+ diffusion
in Li6PS5Cl. We also find pronounced signatures of Gd at the
proximity of r = 0 Å in Na3PS4 (figure S18), suggesting that
the motions of Na+ are highly correlated in this material [62].

4. Discussion

Ion transport in materials is routinely determined through
several experimental techniques, which introduce a source

of variability in the values of ionic diffusivities and
conductivities. Likewise, a certain degree of variability in
these values could also arise from simulations with dif-
ferent methodologies used for prediction. Here, we ana-
lyzed and revealed the main variables involved in the con-
struction of reliable MLPs, in the flavor of MTPs. We
focused on two topical SEs, which are the argyrodites
Li6PS5X (with X = Cl and I) and Na3PS4.

Specifically, we identified, three main classes of variables
affecting the predictive power of MTPs (see figure 1): (a)
physical variables, (b) computational variables, and (c) MTP
fitting parameters. The physical variables include the types
of defects and their concentrations in SEs. The accuracy of
MTPs depends on several computational variables, such as the
types of DFT XC functional, the simulation time, and tem-
perature, respectively, in preparing the AIMD training sets.
A number of MTP-specific parameters also require atten-
tion during the fitting of reliable MTPs. We have commen-
ted on the importance of identifying appropriate values of
the hyper-parameter levmax. The values of levmax that are
too small may lead to inaccurate results, whereas larger val-
ues will cause overfitting. From our experience, in complex
mixed polyanion superionic conductors, such as NaSICON
(Na1+xZr2SixP3−xO12) an optimization of levmax is necessary
to fit accurate potentials.

The sample preparations, such as the synthesis conditions,
show up as variations in the types of defects and their concen-
trations in SEs, directly affecting the measured values of ionic
conductivities and diffusivities. Indeed, determining the types,
concentrations, dimensionalities, and effects of defects com-
monly present in SEs remains a great challenge in this field
[64]. Computational approaches have the advantage of select-
ively incorporating specific defects (e.g. point defects) in SEs
at specific concentrations, and monitoring their effects on the
overall ion transport. We inspected the role of point defects
(vacancies, interstitials, and anti-sites) on the predicted activ-
ation energies for Li+ transport in Li6PS5Cl, in the context of
existing experimental values.

Li+ transport in Li6PS5X is mediated by intrinsic
interstitials [64, 71]. We showed that the existence of other
defects, such as ClS antisite and VLi provide activation ener-
gies that are also in good agreement with experimental values,
suggesting that these defects may be introduced during the
synthesis of Li6PS5Cl.

Plain GGA XC functionals, such as PBE and PBEsol are
computationally accessible and extensively used to perform
extended screening studies of SEs. Among all DFT XC func-
tionals used during the training of MTPs, PBEsol gives res-
ults closer to experimental data for both argyrodites. We
observe that the addition of optB88 vdW correction does
not improve the activation energies. This result is in strik-
ing contrast with Qi et al [32], claiming that MTP trained by
AIMD energy and force calculations using optB88 vdW func-
tional are more accurate in predicting the ion transport prop-
erties for lithium superionic conductors as compared to PBE.
These SEs (argyrodites) and the ones studied by Qi et al [32]
(Li3xLa2/3−xTiO3, Li3YCl6, Li7P3S11) forms into compact
structures, which typically do not require vdW functionals.
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We demonstrated that changing the temperature and times-
cale for the AIMD simulations has direct effects on the predic-
tion of Ea values. This suggests that the simulation time and
the temperature needs to be carefully chosen to get meaningful
and predictive results from MTPs.

Investigating SEs with vibrational spectroscopies has, at
least, twomain advantages: (a) specific low-energy vibrational
modes of migrating ions relate directly with their motion,
and (b) they give insight into the structure of amorphous
(glassy) phases that may be present in SEs. Here, we show-
cased that extended trajectories produced by MTPs, in partic-
ular, the autocorrelation functions can be analyzed to produce
an insightful generalized density of states. This information
is useful to interpret Raman, Infrared and inelastic neutron
scattering experiments of SEs. GDOSs produced from exten-
ded MDs incorporate all the anharmonic effects, which are
harder to capture from DFT calculations. Clearly, in the case
of Li6PS5X (X = Cl, I), ensembles of modes including Li and
the halide species appear at low energies.

5. Conclusions

In summary, we identified the main factors controlling the
quality of MLPs based on the MTP when applied to the ion
transport properties in SEs. Our analysis is centered on three
topical SEs, Li6PS5Cl, Li6PS5I, and α-Na3PS4.

These results underline the importance of high-quality
training sets in fitting MTPs and call attention to short-
timescale and high-temperature AIMD simulations to predict
the room-temperature properties of materials.

We have used the derived MLPs to produce the gen-
eralized phonon density of states and van Hove correla-
tion maps of Li6PS5Cl and Li6PS5I, which allows us to
establish a direct link between the host structure and ion
dynamics in these materials.
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