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A B S T R A C T

Understanding ion transport in functional materials is crucial to unravel complex chemical reactions, improving
the rate performance of materials for energy storage and conversion, and optimizing catalysts. To model ion
transport, atomistic simulations, including molecular dynamics (MD) and kinetic Monte Carlo (kMC) have
been developed and applied. However, kMC simulations are utilized to a lower extent than MDs due to a
lack of systematic workflows to construct models for predicting transition rates. Here, we present kMCpy,
a lightweight, customizable, and modular python package to compute the ionic transport properties in
crystalline materials using kMC. kMCpy is remarkably versatile and user-friendly, making it a powerful
code for studying materials′ kinetics in crystalline systems. kMCpy can be combined with (local) cluster
expansion Hamiltonians derived from first-principles calculations. kMCpy is versatile with respect to any type
of crystalline material, bearing any dimensionality, i.e., 1D, 2D, and 3D. kMCpy provides (i) a comprehensive
workflow to enumerate all possible migration events in crystalline systems, (ii) to derive transition rates
efficiently and at the accuracy of first-principles calculations, and (iii) a robust kMC solver to study kinetic
phenomena in materials. The workflow implemented in kMCpy provides a systematic way to compute highly
accurate kinetic properties. Hence, kMCpy can be used in high-throughput simulations for the discovery and
optimization of novel functional materials.
1. Introduction

Quantifying the properties of ion transport in materials is crucial in
a wide variety of research fields and applications, such as molecular
and protein biology [1–3], energy [4–6], chemical reactions [7,8],
and solid mechanics [9–12]. The advancement of computer hardware,
theoretical models, and suitable software that scale and parallelize
with available computing resources have enabled the evaluation of
ionic transport in solid-state materials [13,14]. A widely used atomistic
simulation technique to probe kinetic properties is molecular dynam-
ics (MD), [13,15] which propagates the state of a given system as
a function of time, where individual particles (atoms) interact via
Newton’s laws of motion. MD has been implemented in a wide variety
of software packages [16–21], where the accuracy of MD is depen-
dent on the accuracy of force evaluations. Forces acting on atoms
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in an MD simulation are accessed from accurate (but computation-
ally expensive) first-principles calculations, or inexpensive (and less
accurate) interatomic potentials (i.e., force fields). Recently, machine-
learning interatomic potentials (MLIPs), including the moment tensor
potential (MTP), the spectral neighbor analysis potential (SNAP), the
Gaussian approximation potential (GAP), and the atomic energy net-
work (AENET) provide streamlined workflows to construct accurate
interatomic potentials leveraging, for example, on ab initio molecular
dynamics (AIMD) data, which combines the accuracy of first-principles
calculations and the computational efficiency of inexpensive classical
MD simulations [22–25].

An alternative to MD is kinetic Monte Carlo (kMC, also known as
dynamic Monte Carlo) [26–28], which has been applied to study kinetic
927-0256/© 2023 Elsevier B.V. All rights reserved.
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Table 1
A qualitative comparison between the capabilities of kinetic Monte Carlo (kMC) and molecular dynamics (MD).

Feature Kinetic Monte Carlo Molecular dynamics

Model Flexible: can use lattice models or simple equations Force fields (classical MD) or electronic structure (AIMD)
Time scale Mesoscopic (up to μs or ms) Up to a few ns (few hundreds of ps) for classical MD (AIMD)
Length scale Flexible: atomistic or mesoscopic Up to a few million (classical MD) or <1000 atoms (AIMD)
Computational efficiency Transition rates are computed directly for each migration event Energies and forces of all atoms are evaluated at each timestep
Rare events accessibility Easy: events propagated randomly based on their transition rates Hard: long simulations or high temperatures for high barriers
Model construction Complex: it requires knowledge of all possible transition events Straightforward: plug & play
Code availability Limited and often relying on in-house codes Numerous general purpose codes available
phenomena materials including, rechargeable batteries [29–32], solid-
oxide fuel cells [33,34], catalysis [35,36], crystal growth [37], vacancy
diffusion in alloys [38,39], thin film growth [40], and fluid dynam-
ics [41]. kMC is particularly useful in quantifying the ion transport in
battery materials, as demonstrated by van der Ven et al. in electrode
materials, such as LixCoO2 [29], LixTiS2 [42], Li1+xTi2O4 [43]. Deng
et al. [32] recently used kMC simulations to predict the conductivity
of Na-ions in solid electrolytes: Na1+xZr2PxSi3-xO12, as a function of
Na content and temperature, eventually sampling a vast compositional,
spatial, and temporal scale. kMC can also be used to examine the
structural evolution of nano-particles as well, as demonstrated by Li
et al. [39].

kMC is based on a stochastic algorithm that randomly samples a
large number of microstates of a given system, utilizing the ergodic
principle to arrive at statistically-averaged transport properties. A com-
parison between MD and kMC is shown in Table 1 and an example of
kMC is presented in Fig. 1. Compared to MD, kMC is a fairly general
simulation algorithm that can be applied to coarse grain material prop-
erties and contribute to multi-scale modeling efforts [44–46]. Thus, the
chief advantage of kMC over MD is the ability of kMC to access ‘‘long’’
timescales (∼ms) and ‘‘large’’ lengthscales (∼μm) compared to what is
usually accessible by MD (<μs, ∼nm) [47].

Unlike MD simulations, which require the explicit integration of
the equation of motion for all species in the system, kMC selectively
propagates transition events based on a simplified model, resulting
in significantly improved computational efficiency. Furthermore, MD
simulations encounter challenges in effectively describing rare events,
such as ion migrations or reaction processes, the former being a crucial
aspect in studying ion diffusion for applications, such as rechargeable
batteries, fuel cells, and electrolyzers. As shown in Fig. 1, the migration
time of Na ions in Na1+xZr2PxSi3-xO12 can span a wide time-scale from
sub-picoseconds to microseconds, depending on factors, such as tem-
perature and composition. Additionally, other processes, for example,
chemical reactions can occur over extended periods, hence presenting
clear challenges in the applications of MD methods.

Two main kMC algorithms have been proposed: (i) kMC with rejec-
tion (r-kMC) [48] and (ii) rejection-free kMC (rf-kMC) [26]. The former
algorithm is similar to the Metropolis algorithm [48] which can select
or reject a transition event using a probability estimate. In rf-kMC, a
transition event is always executed based on a ‘‘list’’ of probabilities.
Thus, rf-kMC is computationally more efficient than r-kMC, especially
when transition rates are low (i.e., event rejection rates are high).

There are several software packages to perform kMC simulations
[49–60], including codes that target higher efficiency kMC algorithms
[61–67], and those that construct novel models to compute accurate
transition rates [68–72].

Although there are numerous advantages to employing kMC to
investigate ion transport in solid-state materials, it is important to
mention that in kMC, all transition events must be known a priori,
and a model is typically required to efficiently compute transition
rates between different microstates. Constructing such a model is often
a nontrivial task, and it requires additional expertise and significant
effort. Consequently, researchers often resort to developing in-house
codes to address this challenge, leading to much slower progress in
the advancement of this field compared to ‘‘plug-and-play’’ MD simula-
2

tions. Hence, it is essential to develop kMC workflows that are flexible b
and can be ‘‘tailored’’ to any given system. These kMC workflows
should potentially include modules for generating all possible transition
events, comprehensive models for the swift and accurate computation
of transition rates for each event. These workflows should also include
robust kMC solvers.

Here, we present our python-based code kMCpy1 to simulate
the kinetic properties of materials, with inputs from first principles
calculations. Specifically, we implement a local cluster expansion (LCE)
model [29,30] to compute migration barriers in crystalline materials
(within the transition state theory framework), where the model is
fitted to calculated barriers from accurate first-principles calculations.
kMCpy contains a rf-kMC solver and related python classes to extract
ion transport properties, such as diffusivities, conductivities, etc. In
addition, kMCpy includes the following features:

• kMCpy is fully developed using python [73,74]. It is compatible
with packages that are widely used in computational materials
science, such as Pymatgen [75]. kMCpy is highly flexible and is
easy to be adapted to any materials system.

• Cross Platform: kMCpy supports most ‘‘mainstream’’ operating
systems, such as Windows, macOS, and Linux/UNIX, in both
x86/64 and ARM architectures. Therefore, kMCpy is POSIX com-
pliant.

• Modular Code Structure: kMCpy is written as modulus, which
can be easily modified and ported/integrated into any specific
application.

• Ease of Use: All input and output data are supplied using human-
readable JSON format, which can be easily parsed and generated
by computers.

• Performance: The computationally-intensive routines of kMCpy
are translated into optimized machine code at runtime using
Numba [76], which is a just-in-time (JIT) compiler designed to
increase computational performance of python codes.

The paper is structured as follows: Section 2 deals with the theoreti-
cal background to compute transport properties in crystalline materials,
Section 3 provides an overview of the kMCpy code, Section 5 describes
the performance of kMCpy, and Section 6 compiles our concluding
remarks and possible future developments of kMCpy. All nomenclature
used throughout the manuscript is listed in the Appendix. kMCpy is
highly flexible and easy to use, making it exceptionally useful for
investigating kinetic phenomena in crystalline materials.

2. Theoretical background

Ionic transport in solids is a stochastic process, occurring through a
series of correlated/non-correlated migration events (or ionic ‘‘hops’’),
which can be effectively modeled using the kMC formalism. The local
energy landscape around the migrating ion determines the ease of
migration within the solid. Quantifying macroscopic ionic transport of
a given chemical species in a given material is usually done in terms
of ionic diffusivities and/or ionic conductivities (see below), both of
which can be evaluated using kMC [29].

1 kMCpy is an open-source code developed under the MIT license and can
e accessed at: https://github.com/caneparesearch/kMCpy

https://github.com/caneparesearch/kMCpy


Computational Materials Science 229 (2023) 112394Z. Deng et al.
Fig. 1. Length scale and time scale of kMC simulations: Panel a shows the length scale of a kMC simulation of an example: Na1+xZr2SixP3-xO12 with periodic boundary condition,
ranging from 18,432 to 21,504 atoms depending on the value of x. Panel b depicts a snapshot of kMC simulation colored with Na-ion hopping probability from 0 Hz (blue)
to 5 × 107 Hz (red) at 573 K, at composition x = 1.5. Panel c presents the average time costs for each Na-ion hop, as well as the total simulation time for this material. Each
data point in panel c consists of an average of 50 kMC simulations and each kMC simulation included 2,048,000 equilibration steps, followed by 12,288,000 production steps for
statistical analysis. Each step is a Na-ion migration.
Before understanding how a typical kMC simulation progresses,
we briefly overview some of the fundamentals of ion transport in
solids. The macroscopic measure of mobility of a migrating species is
determined by the chemical diffusivity (𝐷𝑐), which relates to the flux
and conductivity of the species through Fick’s law [77,78], as stated in
Eq. (1).

𝐽 = −𝐷𝑐∇𝐶 (1)

where 𝐽 is the flux of the migrating species, and 𝐶 is the composition
of the mobile species defined as the number of migrating ions per unit
volume. The chemical diffusivity of the migrating ion relates to the
jump diffusivity (𝐷𝐽 ) through the thermodynamic factor 𝛩 of Eq. (2).

𝐷𝑐 = 𝐷𝐽𝛩 (2)

𝛩 measures the deviation of the interaction between migrating ions
from ideal behavior and is given in Eq. (3)

𝛩 =
𝜕
(

𝜇
𝑘B𝑇

)

𝜕 ln 𝑥
(3)

where 𝜇 is the chemical potential, 𝑘B is the Boltzmann constant, and 𝑥
is the mole fraction of the migrating species.

𝐷𝐽 of Eq. (2) is proportional to the mean squared displacement of
the center of mass of the mobile species, as mathematically described
in Eq. (4).

𝐷𝐽 =

(
∑

𝑖 𝑟𝑖
)2

2𝑑𝑁𝑡
(4)

where 𝑑 is the dimensionality of the diffusion process, 𝑁 is the number
of diffusing species, and 𝑡 is the time taken for diffusion. Further-
more, from the square of displacements of the migrating ions, one
can also calculate the tracer diffusivity (𝐷∗, Eq. (5)), which excludes
cross-correlation effects between the migrating ion [30].

𝐷∗ =
∑

𝑖 𝑟𝑖
2

2𝑑𝑁𝑡
(5)

The ionic conductivity 𝜎 can be then computed via the Nernst–Einstein
relationship:

𝜎 =
𝑒2𝐶𝐷𝐽
𝑘𝐵𝑇

(6)

where 𝐶 is the number of migrating species per unit volume.
Therefore, the cross-correlation between migrating ions can be

quantified from the ratio of 𝐷∗ and 𝐷𝐽 , which is called the Haven’s
ratio (𝐻 ) [79]. Note that H does not measure the correlation between
3

𝑅 𝑅
subsequent hops of a single ion that is migrating, i.e., the deviation
of the trajectory of a single migrating ion from a fully random walk.
This deviation from a fully random walk is measured by the correlation
factor (𝑓 ) of Eq. (7).

𝑓 =
∑

𝑖 𝑟𝑖
2

𝑁𝑛𝑎2
(7)

where 𝑟𝑖 is the net displacement of a migrating ion after 𝑛 hops, while
𝑎 is the average distance for a single hop. Therefore, an accurate
calculation of the ionic transport properties requires the sampling of
a large enough number of migration events, which requires that all
mobile species are tracked during the simulation.

One of the important parameters required by a kMC simulation is
the migration barriers (𝐸𝑏s), which are the energy barriers that the
mobile ion must overcome to complete a successful hop. 𝐸𝑏 ultimately
determines the probability of occurrence of a given ionic hop. Typi-
cally, 𝐸𝑏s are evaluated using the nudged elastic band (NEB) method
in combination with density functional theory (DFT) [80,81]. In an NEB
calculation, one performs a constrained relaxation of a specific number
of virtually connected ‘‘images’’, between the initial and final positions
of a migration event, along a guessed minimum energy pathway (MEP).
The relaxation is constrained to maintain a uniform spacing between
the images (i.e., as uniform as possible), through the addition of
fictitious spring forces. Other tools, such as force fields and machine-
learned interatomic potentials, can also be used to determine 𝐸𝑏 instead
of DFT, and kMCpy is also compatible with such tools.

Note that 𝐸𝑏 in solids not only depends on the local environment of
the migrating ion but also the direction of the hop. Hence, to remove
any direction-dependence of a hop, we resort to the so-called kinetically
resolved activation barrier (𝐸KRA) of Eq. (8) proposed by van der Ven
et al. [29].

𝐸KRA = 𝐸𝑏[𝑖 → 𝑗] − 1
2
𝛥𝐸end (8)

where 𝐸𝑏[𝑖 → 𝑗] is the calculated 𝐸𝑏 (e.g., with NEB) for a site 𝑖 to site
𝑗 hop and 𝛥𝐸end is the absolute difference between the computed DFT
total energies of the initial and final positions (i.e., the endpoints).

In principle, the 𝐸KRA has to be calculated for all possible migration
events that can occur in a solid (as the local bonding/coordination
environment changes for example). However, calculating 𝐸𝑏 for all
possible hops via NEB calculations is computationally intensive and
often impractical. One strategy to circumvent the computational ob-
stacles of NEB calculations is that of the LCE approach. An LCE is
normally used to construct a simplified lattice Hamiltonian, which can
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Fig. 2. Example of clusters that are typically encountered in a cluster expansion
verlaid over a representative lattice. Within a cutoff distance from the center of a
iven lattice site, local orbits are drawn which extract the different interactions, such
s point (red and blue dots), pair (orange dots), and triplet (gray dots). For each lattice,
nly the symmetrically-unique clusters are used to construct the cluster expansion.

enerate approximate 𝐸𝑏 quickly (by estimating a 𝐸KRA), based on the
local configuration(s) of the moving and nonmoving species, which is
defined in Eq. (9) [29,82].

𝐸KRA = 𝑉0 +
∑

𝛼
𝑉orbit𝜙orbit (9)

where

𝜙orbit =
∏

𝑖 ∈orbit
𝜎𝑖 (10)

Here, an orbit implies a cluster of sites, which for example, can be a
point, a pair, or a triplet, or higher-order terms, as depicted in Fig. 2. 𝜎
is the occupation variable of a given site within a cluster, whose value
depends on the basis set used. For example, 𝜎 can take the value of
1 or +1 to indicate the presence or absence of an atom at a given
ite. To account for local interactions, orbits are usually truncated at
inite distances from a given site. In Eq. (9), the terms 𝑉0 and 𝑉orbit

are the kinetic effective cluster interactions (KECIs). The values of the
KECIs are determined by fitting Eq. (9) a set of NEB-calculated 𝐸KRA.
Note that instead of an LCE, surface models, thin-film models, or coarse
grain models [44,45] can also be used for estimating 𝐸𝑏.

After determining 𝑉orbit and 𝑉0 in Eq. (9), one proceeds with kMC
simulations, whose workflow is shown schematically in Fig. 3(a). In
kMCpy, we have implemented the rf-kMC method, also known as the
Bortz–Kalos–Lebowitz (BKL) algorithm [26]. Specifically, we list the set
of all possible migration events in a given solid and their corresponding
probabilities, amongst which one migration event is selected. Once a
hop is selected, the hop is always executed, and subsequently, the list
of possible migration events is updated.

The typical procedure for the BKL method is summarized in the text
below and Fig. 3. Note that Fig. 3 does not include the equilibration
process.

1. Initialization: In this step, a representative structure is generated,
which contains a fixed concentration of mobile ions and va-
cancies (assuming a vacancy-mediated migration mechanism).
These structures can be obtained from canonical Monte Carlo
(CMC), grand-canonical Monte Carlo (GCMC) [83] simulations,
random structure generators [38], or other structural enumera-
tion techniques. During the initialization, a tracker is also set,
which keeps track of the migration observables, such as the
mean squared displacement (MSD) of the diffusing species, the
location of the center of mass, 𝐷𝐽 , and 𝑓 .

2. Event proposal: A list of probabilities (𝛤𝑚) is generated for all
possible migrating paths (𝑚) available for all mobile ions in
the simulation box. This list also includes hops that may not
4

Fig. 3. a Flow chart of the kMC process. 𝑖 kMC steps are repeated with each kMC
simulation starting from a different initial structure (i.e., 𝑗 initial structures in total). b

ll migration events are listed on a hypothetical axis, with the solid line representing
heir hopping probabilities (𝛤 ). An event no. 𝑘 is then randomly proposed based
n a random number 𝜌. 𝛤tot (𝑘) is a cumulative sum of events from no. 0 to no. 𝑘

(i.e., 𝛤𝑡𝑜𝑡(𝑘) =
∑𝑘

𝑚=0 𝛤𝑚). 𝛤𝑡𝑜𝑡 is the sum of the hopping probabilities of all migration
events.

be feasible. For example, if both the initial and final sites of a
migration event (path) are occupied by an atom (instead of one
of the sites being vacant), the value of 𝛤𝑚 is set to 0. The hopping
probability (𝛤 ) for each migration event is calculated using the
transition state theory [84] via Eq. (11).

𝛤 = 𝜈∗ exp
(

−𝐸𝑏
𝑘𝐵𝑇

)

(11)

From Eqs. (8) and (9), it is possible to quickly generate 𝐸𝑏 for
every possible hop. 𝜈∗ is the prefactor and is usually assumed to
be of the order of 1011 to 1013 Hz [29,85]. 𝑇 is the simulation
temperature.
Following the generation of the probability list, a migration
event (𝑘) is chosen based on a random number (0 < 𝜌 < 1),
such that it satisfies Eq. (12).

1
𝛤tot

𝑘−1
∑

𝑚=1
𝛤𝑚 < 𝜌 ≤ 1

𝛤tot

𝑘
∑

𝑚=1
𝛤𝑚 (12)

where 𝛤tot is the sum of all the individual probabilities of all
migration events. This step is shown schematically in Fig. 3(b).
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Fig. 4. Left Workflow of kMCpy package. Right python classes of kMCpy used for each stage of execution. Note that the initial structures for running kMC simulations are
obtained from a structure enumerator. Migration barriers are computed from DFT-NEB calculations (dashed boxes), or even from MLIP-NEB calculations. In the current version,
only the LCE model has been implemented.
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3. Update event and tracker : After an event is chosen and executed,
the time step (𝛿𝑡) is updated by drawing another random number
(0 < 𝜁 < 1) as shown in Eq. (13).

𝛿𝑡 = − 1
𝛤tot

ln 𝜁 (13)

Subsequently, the occupation vector, the new event list, and
their corresponding probabilities, the displacement vector(s), the
location (𝑠) of the mobile ions, the location of the center of mass,
and the hop counter are updated.

A single kMC pass includes repeating the event proposal, updating
he event, and updating tracker steps the same number of times as
he number of mobile ions in the initialized structure. Generally, a
arge number of kMC passes are required to accurately predict trans-
ort properties. For example, Deng et al., undertook ≈106 kMC passes
o simulate Na-transport in superionic conductors over a millisecond
cale [32]. After running a sufficiently large number of kMC passes,
roperties, such as 𝐷𝐽 , 𝐷∗, 𝐻𝑅, and 𝑓 are estimated. Thus, a collection
f kMC passes for a single initial structure is referred to as a kMC run.
o get a better estimate of the transport properties at a given com-
osition, kMCpy also calculates the properties as the initial structure
s varied 𝑗 times (i.e., 𝑗 kMC runs). This ensures that the transport
roperties calculated represent a statistical estimate that is observed
5

n experiments. m
. Overview of kmcpy

.1. Workflow

The workflow of kMCpy is shown in Fig. 4. Note, the NEB (Nudged
lastic Band) barriers and initial structures, as shown in the dashed
oxes of Fig. 4 are inputs for kMCpy. The specific python classes
or each action are shown as gray boxes on the right-hand side of
ig. 4. kMCpy contains functions to analyze crystal structures, construct
n LCE model, and generate a list of possible migration events (see
ections 3.2 and 3.3). Starting from a list of DFT-NEB (or even MLIP-
EB) computed barriers, kMCpy fits an LCE model (see Section 3.4).
he constructed model and events are then used to run kMC simulations
ith input structures that are either the thermodynamic ground state(s)
r any other user-defined structures (Section 3.5). The trajectory of
ach mobile species is stored and analyzed with a Tracker class as
mplemented in kMCpy (Section 3.6). Examples of input and output
iles are provided in Section 3.7. All python classes mentioned in the
ollowing sections can be stored in a human-readable JSON format and
an be re-initialized after each stage.

.2. Model construction

Before running a kMC simulation, a representative lattice model

ust be constructed to compute the barriers efficiently for any local
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environment, and the current version of kMCpy uses the LCE frame-
work. However, the modular nature of kMCpy is such that other lattice
models can also be used and integrated.

The LCE is implemented in the LocalClusterExpansion class
in kMCpy.model. The local environment in the LCE model is de-
scribed using a migration unit (MigrationUnit), which is defined as
a representative collection of sites centered around a given activated
state (AS), where possible migration events can take place. The mi-
gration unit is generated using the user-specified cutoff radius. As a
result, when a local environment is imported, an ‘‘occupation vector’’
(see Appendix) will be constructed based on the atomic species at each
site.

Subsequently, all clusters within a migration unit are found by
enumerating all points, pairs, triplets, etc. via a cutoff radius (specified
by the user) for each type of cluster. All symmetrically equivalent
clusters are then grouped as orbits, which become elements in the
‘‘correlation vector’’ (see Appendix). Clusters and orbits are coded
into the kMCpy.model as the Cluster and the Orbit classes. In
addition to the species and the atomic coordinates, Cluster and
Orbit both have functions to compute ‘‘correlation’’ (see Appendix)
for a given orbit based on the occupation of sites.

3.3. Events’ generation

A kMC simulation needs a list of all possible migration events within
a given simulation cell before its execution. Therefore, in kMCpy, we
handle migration events using the Event class in kmcpy.event.
Event stores the indices of two sites (e.g., initial and final sites)
involved in the migration event and the indices of all sites within the
surrounding migration unit, i.e., local environment indices. Event also
has built-in functions to compute the correlation vector, the migration
barrier, and the hopping probability after an occupation vector has
been assigned.

kMCpy enumerates all Event objects, before the kMC run. This is
done via a wrapper function, EventGenerator class as implemented
in kmcpy.event_generator, which receives the LocalClus-
terExpansion as input and loops through all migration units in the
whole simulation cell to generate all possible events. From a given
identifier of mobile species (i.e., the mobile_ion_identifier pa-
rameter), two site indices involved in the migration event, namely, sites
that the ion hops from and hops into, are identified. Subsequently,
the indices of all sites in the current migration unit are stored for
calculating the migration barrier.

3.4. Model fitting

To fit DFT-NEB barriers using the LCE model, we have implemented
the Fitting class in kmcpy.fitting. This function performs fitting
by interfacing with the python package scikit-learn [86]. kMCpy
also stores fitted results (i.e., the KECIs) in a portable JSON format. The
current implementation of kMCpy uses the ‘‘LASSO’’ regression [87]
to perform the fitting. Indeed, LASSO limits the selection of orbits in
the fit to the most important ones. LASSO requires a user-specified 𝛼
parameter to reduce the total number of selected orbits. The Fitting
class stores the fitting history, e.g. 𝛼 and weights used during LASSO
regression, for keeping a record and fine-tuning the LCE.

Note that an LCE typically fits the 𝐸KRA that is obtained from NEB
calculations. Therefore, the 𝛥𝐸end term in Eq. (8) can be computed
either from CMC (e.g., by interfacing other codes, such as CASM [88],
smol [89], and CLEASE [90] or by fitting a separate LCE model.
kMCpy has the flexibility to adopt either approaches to determine 𝐸end.
In the case an LCE is used for fitting values of 𝐸end too, then the 𝐸end
data extracted from NEB calculations is used as an input for the fitting
6

process.
3.5. Kinetic Monte Carlo

The KMC class in kmcpy.kmc can be used to perform kMC sim-
ulations. Multiple (e.g., 50) kMC runs should be done to eliminate
the dependency of the results on the starting configurations. Initial
structures of kMC runs are taken either from the thermodynamic
ground state(s) (e.g., from CMC or GCMC simulations), or from a
structure enumerator (see Fig. 4). Auxiliary tools are provided in
kmcpy.tools.gather_mc_data to extract the occupation vectors
from a structure in the crystallographic information file (CIF) format.

The general process of rf-kMC is described in Fig. 3, and an example
of a standard output of both the initialization and the execution pro-
cesses of kMC is shown in Fig. 5a and b. The KMC class is first initialized
using a size specification of the simulation (super)cell, the initial occu-
pations, the fitted model, the generated events, and a reference crystal
structure. When the LCE model is used, information about clusters,
orbits, and the KECIs is provided. kMCpy then ‘‘walks’’ through all
available migration events and evaluates the occupations, correlation
vectors, and hopping frequencies, given a simulation temperature and
a 𝜈∗.

Upon initialization of the kMC, the KMC.run() function is called
to perform the kMC simulation by supplying the total number of
equilibration and sampling steps, respectively. The equilibration steps
are not explicitly shown in Fig. 3a. A Tracker object is initialized
once the equilibration process is complete (see Section 3.6). As shown
in Fig. 3b, for each kMC step, an event 𝑘 is randomly proposed using
KMC.propose(), based on Eq. (12).

After the proposed event is executed, the related occupations, corre-
lations, and hopping frequencies are updated. Since a given site may be
involved in multiple migration events, all events with sites associated
with the proposed event are updated. The number of events that require
updation after a proposed event is defined as the coupling strength of
events, which can influence the computational performance of kMC
(see Section 5). We use a pre-computed table (event_kernel) to
quickly identify all events that need to be updated.

3.6. Tracking diffusion

To follow the displacements of all mobile species with respect to
their original positions and to count the number of hops of each mobile
ion, kMCpy uses a Tracker class in kmcpy.tracker. This class
is activated only after the equilibration is complete. The Tracker
is initialized with the initial occupation vectors, a reference crystal
structure of the simulation cell, the formal charge on migrating species,
the dimensionality of the overall diffusion process, the average hopping
distances (in Å), the simulation temperature, and 𝜈∗. The initial location
of each migrating species is recorded and their displacement vectors
and counters are set to zero during initialization. During each kMC
step, Tracker.update() updates the displacement vector (taking
into account periodic boundary conditions) and the hopping counter of
the migrating species involved in a proposed event.

Using Eqs. (2)–(7) in Section 2, Tracker computes transport prop-
erties, such as MSD, 𝐷𝐽 , 𝐷∗, 𝜎, 𝑓 , and 𝐻𝑅 from the displacements of
all migrating ions. The chemical diffusivity, 𝐷𝑐 (Eq. (2)) can be com-
puted once 𝛩 is identified for systems with variable compositions, such
as electrodes [30]. Tracker.summary() and Tracker.write_
results() routines print and save the simulation results, respec-
tively.

3.7. Input and output files

The inputs required by kMCpy (Fig. 4a) can be prepared in JSON
ormat, through the use of Jupyter notebooks for instance. Sample input
iles are provided in the input_example folder of our GitHub reposi-

tory (https://github.com/caneparesearch/kMCpy). Further, a command

line wrapper executes kMCpy from the command line, which can be

https://github.com/caneparesearch/kMCpy
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Fig. 5. Screenshots of initialization (KMC.initialization(), in a) and execution (KMC.run(), in b) of kMC. KMC.initialization() prints the input parameters and
KMC.run() shows the computed results. A Tracker object is initialized and subsequently called at the end of KMC.run(). c shows the graphic user interface (GUI) of kMCpy
relying on the python library Gooey.
found in kmcpy.executable.
wrapper. Users can also customize their workflow by importing
specific modules described in the previous sub-sections.

An example of a standard output of KMC.initialization()
and KMC.run() is shown in Fig. 5a and b. kMCpy prints the infor-
mation imported from the JSON input files and sets the parameters
described in Sections 3.5, 3.6, and Fig. 3.

kmcpy.executable.gui_wrapper offers a graphical user in-
terface (GUI) as shown in Fig. 5c, which builds upon the python
library Gooey [91]. This GUI covers all required and optional ar-
guments for each step, providing a convenient way to test different
parameters and for educational/demonstration purposes as well.

A required task in the Actions box must be chosen in the GUI
interface, following the descriptions in Sections 3.2 to 3.5. Next, all
essential input parameters required for this task must be provided.
For example, if KMCSimulation is chosen, one must provide: the
working directory, the initial occupation, the original crystal structure,
the fitted LCE model, the generated events, a value of 𝜈∗, and the
simulation temperature. The documentation is available via a website
(https://kmcpy.readthedocs.io) with details on all input parameters to
run kMCpy. By clicking the ‘‘Start’’ button, kMCpy will perform the
selected task with the standard output of the simulation (similar to the
command line output of Fig. 5a and b) displayed in a separate pop-up
window.

4. Practical tips on using kmcpy and data analysis

Although kMC is conceptually straightforward, several considera-
tions must be taken into account when applying this method in practice.
These are:

1. During the construction of the model, the selection of an ap-
propriate cutoff value is paramount to ensure that the model
captures most of the diffusion properties of the relevant chemical
species.

2. Identifying minimal sizes of the basis set that can accurately
represent the NEB barriers is another important consideration.
The choice of cutoffs for clusters determines the size of the basis
7

set, with larger cutoffs including more clusters in the model.
However, regularization techniques must be employed to select
only the most representative clusters, with the regularization
process, for example, controlled by the ‘‘𝛼’’ parameter in the
LASSO procedure. In addition, as shown in Fig. 6c, an extremely
large basis set may worsen the performance of kMC simulations.

3. In the fitting process, it is important to minimize the fitting error
and ensure that the number of non-zero KECIs does not exceed
the number of NEB barriers.

4. As a rule of thumb, it is important to limit the root mean square
(RMS) error of fitted barriers below ±60 meV, as this ensures
an acceptable level of accuracy corresponding to an order of
magnitude error in diffusivity [92].

By adhering to these guidelines, users can improve significantly the
reliability and accuracy of the kMC method in practical applications.

In the kMC process, properties such as 𝐷𝐽 , 𝐷∗, 𝐻𝑅, and 𝑓 are
efficiently computed with kMCpy. However, when it comes to calcu-
lating the mean square displacement (MSD), used to compute values
of diffusivities, multiple approaches can be invoked. A widely used
approach is the so-called direct method:

MSD(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
(𝑟𝑖(𝑡) − 𝑟𝑖(0))2 (14)

where 𝑁 is the total number of particles.
Another approach is the window average method, which offers an

alternative way of calculating the MSD:

MSD(𝜏) = 1
𝑁

𝑁
∑

𝑖=1

1
𝑁steps − 𝜏

𝑁𝑠𝑡𝑒𝑝𝑠−𝜏−1
∑

𝑘=0
(𝑟𝑖(𝑘 + 𝜏) − 𝑟𝑖(𝑘))2 (15)

where 𝜏 is the window size in time steps, and 𝑁steps is the total
number of time frames. This method, represented by Eq. (15), involves
computing an average of the MSD across all possible window lengths
𝜏 employed throughout the simulation. By considering various win-
dow lengths, this method provides a broader perspective on particle
displacement, enabling a comprehensive understanding of diffusivity.
However, it is worth noting that the window average method can be
computationally intensive, especially when dealing with large datasets.

https://kmcpy.readthedocs.io
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Fig. 6. a shows the average computing time, per kMC pass (left 𝑦-axis, orange lines) and per kMC step (right 𝑦-axis, black lines), as a function of the total number of atoms
or kMC simulations of Na1+xZr2PxSi3−xO12, scaling from 1 × 1 × 1 (42 atoms) to 10 × 10 × 10 supercells (42,000 atoms). The details of this model can be found in Ref. [32].
olid and dashed lines refer to the time consumption with and without Numba, respectively. The LCE model contains 19 unique orbits and 212 possible clusters, with a coupling
trength of 12. b shows the relationship between the time consumption and coupling strength between events (defined in Appendix) performed on an 8 × 8 × 8 supercell lattice.
c describes the effect of basis set size (number of clusters/orbits in LCE model) on simulation time, using the 8 × 8 × 8 supercell.
l

f

To mitigate this computational burden, an efficient approach is to
implement the Fast Fourier Transform (FFT) algorithm, which can
significantly accelerate the calculations involved in the window average
method.

Presently, the implementation of kMCpy uses primarily the direct
method for computing the MSDs. However, future versions will include
the window average method.

5. Performance of kmcpy

kMCpy has been developed in python, a high-level, human-
interpretable language that combines flexibility and ease of program-
ming. Since python is one of the most widely used programming
languages [73,74] both in the fields of materials informatics and data
science, it provides a set of readily available tools and libraries that
can be used to accelerate the development of new codes and libraries.
Among them, we utilize a JIT compiler, Numba [76], to increase
the computational performance of kMCpy. Specifically, Numba trans-
lates the most numerically demanding part of kMCpy into optimized
machine code.

We emphasize that kMCpy is a serial code, i.e., a single kMC run
is executed on a single CPU core. However, multiple kMC runs can
be executed simultaneously on a multi-core platform, such as a high-
performance computing server or on the cloud. For example, different
initial structures can be generated for a system and a kMC run for each
initial structure can be run in parallel, thus reducing compute time.

Computationally, the intensive part of kMCpy is evaluating the
correlation vector for each Event. Therefore, the size of the basis set
(i.e., number of clusters and orbits), the total number of events, and
the coupling strengths between different events (see Appendix) can
crucially influence the determination of the correlation vector and the
computational performance. For example, the basis-set size controls
the computational cost of updating the correlation vector of a single
event, whereas the total number of unique events and the coupling
strengths between events set the total number of events to be updated
during each kMC step. These quantities are usually coupled with each
other, i.e., larger cutoff radii usually lead to larger basis sets, and
in turn, stronger coupling between events, resulting in an increased
computational cost of the kMC run.

We benchmarked,2 the computational performance of kMCpy with
the data compiled in Table 2, which shows the time required to prepare

2 All benchmarks were performed on a 2020-year model 13-inch Apple
acBook Pro with a M1 chipset (8 core CPU + 8 core GPU) and 16 GB of
AM.
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Table 2
Time (in s) distribution for bootstrapping and running a kMC simulation
of a test model. Details of hardware information and input model to
perform these benchmarks are mentioned in footnotes 2 and 3.
Action Time elaspsed

Model Generation (212 clusters) 2.10
Model Fitting (19 orbits) 2.60
Events Generation (6144 events) 1.31
kMC simulation (100 passes/51,200 steps) 168.00

inputs and run a very short simulation on a test system.3 The process
of input preparation includes the construction of the model, fitting of
the model, and events generation, which in total takes less than 10 s.
100 kMC passes (51,200 steps per pass) on this model takes ∼3 min,
indicating that the time required for preparing the input is generally
marginal compared to the kMC simulation itself.

Eq. (16) shows fitted dependencies between the simulation time and
the three major factors:

𝑡 ∝ 𝑓Numba(𝑁cell) ×𝑁1.16
cluster ×𝑁1.01

cell ×𝑁1.10
coupling (16)

where 𝑁cluster , 𝑁cell, 𝑁coupling are the number of clusters, the size of
the supercell, and the coupling strength, respectively. 𝑓Numba denotes
the acceleration effect using the Numba routines on the computational
time. The benchmark results are shown in Fig. 6.

The average simulation time using different cell sizes (indicated by
the total number of atoms per simulation box) is depicted in Fig. 6a.
Without Numba, the elapsed time per kMC step remains approximately
constant ∼10−1 s (dashed black line). Numba accelerates significantly
the kMC simulation by factor of ∼2 (10−3 s, solid black line). The
speedup by Numba is weakened when the simulation cell becomes
arger. Therefore, Numba can enable access to longer and larger scale

simulations with kMCpy [32]. As 1 kMC pass is just the total number
of available sites within the simulation cell, the run time per kMC pass
grows linearly when the cell size (i.e., the number of atoms) becomes
larger. Figs. 6b and 6c demonstrate the effect of the coupling strength
between events, and the basis set size, which also contributes to a quasi-
linear increase towards the run time of each kMC pass. These results
show that the time complexity of the implemented kMC algorithm is
𝑂(∼ 𝑁).

3 A LCE model for Na ion migration was built with a ∼6 Å cutoff radius
or point, pair and triplet clusters on Na1+xZr2PxSi3-xO12 yielding a total of

19 unique orbits and 212 possible clusters. The LCE model was fitted with
data from DFT-NEB calculations. 6144 distinct Na-ion hopping events were
generated in a 8 × 8 × 8 supercell lattice.
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6. Conclusion

In summary, we presented kMCpy, a lightweight open-source
python package to perform kMC simulations of ionic transport in
crystalline solids, with inputs from DFT calculations. kMCpy and its im-
plemented workflow provide a framework for the scientific community
to predict the transport properties of any crystalline solid with high
accuracy and performance. The design of kMCpy should facilitate its
use on most available computational platforms from standard laptops
to high-performance supercomputers. The modular framework makes it
highly customizable and easily programmable. By utilizing the JIT com-
piler –Numba, kMCpy achieves high computational performance. Both
the input and the output files of kMCpy rely on the human-readable
JSON format, which is easy to distribute.

Future developments of kMCpy include: (i) the use of GPU-based
acceleration for improved computational performance, (ii) the develop-
ment of a thermodynamic (CMC/GCMC) module and a built-in struc-
ture enumerator, (iii) more fitting approaches for cluster expansion
in the form of modularized Fitting objects, and (iv) additional
models for the evaluation of 𝐸KRA that are alternative to LCE. We
hope that we can achieve a fully self-consistent, highly robust, and
high-performance framework for simulating materials’ kinetics using
the kMC approach without sacrificing the user-friendliness of kMCpy.
In conclusion, kMCpy exhibits a combination of flexibility and user-
friendliness, making it useful for investigating the materials′ kinetics
of crystalline systems.
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Appendix. Nomenclature

• Site: 𝑖 ∈ {0, 1,… , 𝑁 −1} is a site in a simulation cell with 𝑁 sites.
𝑖 is a unique global index of a site.

• Occupation: in a Chebyshev basis 𝜎𝑖 has a value of ±1 for site
𝑖, e.g., occupied (−1) or unoccupied (+1), or species A (−1) and
species B (+1).

• Occupation Vector: �⃗� = [𝜎0, 𝜎1,… , 𝜎𝑁−1] is a vector of occupa-
tions in a simulation cell.

• Migration unit: 𝑀 = [𝑖0, 𝑖1,… , 𝑖𝑚] is a collection of all sites
within a specific cutoff radius around the center of a migration
unit, where 𝑚 is the total number of sites within that migration
unit. There are multiple migration units in the simulation cell.

• Sublattice Site: 𝑖 ∈ {0, 1,… , 𝑛 − 1} is a site within a migration
unit with 𝑛 sites.

• Distance Matrix: D: Distance matrix of a migration unit is a 𝑚×𝑚
matrix where 𝑚 has been defined above. Matrix elements 𝑑𝑖𝑗 are
the Cartesian distances between site 𝑖 and 𝑗 within a migration
unit.

• Cluster: [𝑖0, 𝑖1,… , 𝑖𝑛] is a collection of sublattice sites (𝑖) within a
migration unit with a length of 𝑛. Presently there are four types
of clusters implemented in the code:
Point: a cluster containing 1 site, 𝑛 = 1;
Pair: a cluster containing 2 sites, 𝑛 = 2;
Triplet: a cluster containing 3 sites, 𝑛 = 3;
Quadruplet: a cluster containing 4 sites, 𝑛 = 4;
Note, the order size of these clusters can be easily extended
beyond 4.

• Cluster Function: 𝜙𝛼(�⃗�) =
∏

𝑖∈𝛼 𝜎𝑖 is a product of all occupations
of all sites that belong to a cluster.

• Orbit, [𝛼[0], 𝛼[1],… , 𝛼[𝑚]] is a collection of symmetrically equiv-
alent clusters with a multiplicity of 𝑚 within a migration unit.

• Correlation: 𝜙𝑂(�⃗�) =
∑

𝛼∈𝑂 𝜙𝛼(�⃗�) is the summation of clus-
ter functions of all symmetrically equivalent clusters within a
migration unit that belongs to an orbit.

• Correlation Vector:
𝜙(�⃗�) = [𝜙𝑂[0](�⃗�), 𝜙𝑂[1](�⃗�),… , 𝜙𝑂[𝑛](�⃗�)] (17)

is a collection of all correlations for each orbit within a migration
unit with a length of 𝑛. This is also the basis-set size.

• Cluster Expansion Model:
𝐸(�⃗�) = 𝑉0 +

∑

𝛼
𝑉𝛼𝜙𝛼(�⃗�) (18)

where 𝐸 is the total energy (typically the DFT total energy), and
𝑉0 and 𝑉𝛼 are called effective cluster interactions (ECIs) for each
cluster, which are fitted from first-principles calculations. The
summation polynomials are usually truncated to specific cluster
sizes (e.g., quadruplet, quintuplet, etc.). All clusters belonging to
the same orbit share the same 𝑉𝛼 .

• Local Cluster Expansion Model uses a local cluster expansion
model,

𝐸KRA(�⃗�) = 𝐾0 +
∑

𝛼
𝐾𝛼𝜙𝛼(�⃗�) (19)

where 𝐸KRA is the kinetic resolved activation energy barrier
which is independent of migration directions. 𝐾0 and 𝐾𝛼 are
called kinetic effective cluster interactions (KECIs), which are
fitted from first-principles NEB calculations. The directional de-
pendent activation energy can further be recovered using

𝐸𝑏 = 𝐸KRA(�⃗�𝐴𝑆 ) +
1
2
𝛥𝐸end (20)

where �⃗�𝐴𝑆 is the occupation vector at the activated state and 𝐸𝑏
is the activation energy barrier from initial to final images. 𝛥𝐸end
is the total energy difference between the final and initial images,
respectively:

𝛥𝐸 = 𝐸(�⃗� ) − 𝐸(�⃗� ) (21)
end f inal initial

https://www.nscc.sg
https://www.nscc.sg
https://www.nscc.sg
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• Event is a swap of occupation values between two hopping sites.
• Pass is defined as the total number of mutable sites in the

simulation cell.
• Coupling Strength Between Events is the total number of events

that need to be updated after an event has been executed.
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