
Computational Materials Science 229 (2023) 112394

0

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Full length article

kMCpy: A python package to simulate transport properties in solids with
kinetic Monte Carlo
Zeyu Deng a, Tara P. Mishra a,b, Weihang Xie a, Daanyal Ahmed Saeed e,
Gopalakrishnan Sai Gautam c, Pieremanuele Canepa a,b,d,f,∗

a National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575, Singapore
b Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 10-01 CREATE Tower, Singapore 138602, Singapore
c Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
d National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
e University of California, Berkeley, 2437 Piedmont Avenue, Berkeley, CA 94704, United States of America
f University of Houston, Department of Electrical & Computer Engineering, Houston, TX 77204, United States of America

A R T I C L E I N F O

Keywords:
Kinetic Monte Carlo
Transport property
Kinetics
Cluster expansion
Ion transport

A B S T R A C T

Understanding ion transport in functional materials is crucial to unravel complex chemical reactions, improving
the rate performance of materials for energy storage and conversion, and optimizing catalysts. To model ion
transport, atomistic simulations, including molecular dynamics (MD) and kinetic Monte Carlo (kMC) have
been developed and applied. However, kMC simulations are utilized to a lower extent than MDs due to a
lack of systematic workflows to construct models for predicting transition rates. Here, we present kMCpy,
a lightweight, customizable, and modular python package to compute the ionic transport properties in
crystalline materials using kMC. kMCpy is remarkably versatile and user-friendly, making it a powerful
code for studying materials′ kinetics in crystalline systems. kMCpy can be combined with (local) cluster
expansion Hamiltonians derived from first-principles calculations. kMCpy is versatile with respect to any type
of crystalline material, bearing any dimensionality, i.e., 1D, 2D, and 3D. kMCpy provides (i) a comprehensive
workflow to enumerate all possible migration events in crystalline systems, (ii) to derive transition rates
efficiently and at the accuracy of first-principles calculations, and (iii) a robust kMC solver to study kinetic
phenomena in materials. The workflow implemented in kMCpy provides a systematic way to compute highly
accurate kinetic properties. Hence, kMCpy can be used in high-throughput simulations for the discovery and
optimization of novel functional materials.
1. Introduction

Quantifying the properties of ion transport in materials is crucial in
a wide variety of research fields and applications, such as molecular
and protein biology [1–3], energy [4–6], chemical reactions [7,8],
and solid mechanics [9–12]. The advancement of computer hardware,
theoretical models, and suitable software that scale and parallelize
with available computing resources have enabled the evaluation of
ionic transport in solid-state materials [13,14]. A widely used atomistic
simulation technique to probe kinetic properties is molecular dynam-
ics (MD), [13,15] which propagates the state of a given system as
a function of time, where individual particles (atoms) interact via
Newton’s laws of motion. MD has been implemented in a wide variety
of software packages [16–21], where the accuracy of MD is depen-
dent on the accuracy of force evaluations. Forces acting on atoms

∗ Corresponding author at: National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575,
Singapore.

E-mail addresses: msedz@nus.edu.sg (Z. Deng), pcanepa@nus.edu.sg, pcanepa@central.uh.edu (P. Canepa).

in an MD simulation are accessed from accurate (but computation-
ally expensive) first-principles calculations, or inexpensive (and less
accurate) interatomic potentials (i.e., force fields). Recently, machine-
learning interatomic potentials (MLIPs), including the moment tensor
potential (MTP), the spectral neighbor analysis potential (SNAP), the
Gaussian approximation potential (GAP), and the atomic energy net-
work (AENET) provide streamlined workflows to construct accurate
interatomic potentials leveraging, for example, on ab initio molecular
dynamics (AIMD) data, which combines the accuracy of first-principles
calculations and the computational efficiency of inexpensive classical
MD simulations [22–25].

An alternative to MD is kinetic Monte Carlo (kMC, also known as
dynamic Monte Carlo) [26–28], which has been applied to study kinetic
927-0256/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.commatsci.2023.112394
Received 9 June 2023; Received in revised form 19 July 2023; Accepted 20 July 2
023

https://www.elsevier.com/locate/commatsci
http://www.elsevier.com/locate/commatsci
mailto:msedz@nus.edu.sg
mailto:pcanepa@nus.edu.sg
mailto:pcanepa@central.uh.edu
https://doi.org/10.1016/j.commatsci.2023.112394
https://doi.org/10.1016/j.commatsci.2023.112394


Computational Materials Science 229 (2023) 112394Z. Deng et al.
Table 1
A qualitative comparison between the capabilities of kinetic Monte Carlo (kMC) and molecular dynamics (MD).

Feature Kinetic Monte Carlo Molecular dynamics

Model Flexible: can use lattice models or simple equations Force fields (classical MD) or electronic structure (AIMD)
Time scale Mesoscopic (up to μs or ms) Up to a few ns (few hundreds of ps) for classical MD (AIMD)
Length scale Flexible: atomistic or mesoscopic Up to a few million (classical MD) or <1000 atoms (AIMD)
Computational efficiency Transition rates are computed directly for each migration event Energies and forces of all atoms are evaluated at each timestep
Rare events accessibility Easy: events propagated randomly based on their transition rates Hard: long simulations or high temperatures for high barriers
Model construction Complex: it requires knowledge of all possible transition events Straightforward: plug & play
Code availability Limited and often relying on in-house codes Numerous general purpose codes available
phenomena materials including, rechargeable batteries [29–32], solid-
oxide fuel cells [33,34], catalysis [35,36], crystal growth [37], vacancy
diffusion in alloys [38,39], thin film growth [40], and fluid dynam-
ics [41]. kMC is particularly useful in quantifying the ion transport in
battery materials, as demonstrated by van der Ven et al. in electrode
materials, such as LixCoO2 [29], LixTiS2 [42], Li1+xTi2O4 [43]. Deng
et al. [32] recently used kMC simulations to predict the conductivity
of Na-ions in solid electrolytes: Na1+xZr2PxSi3-xO12, as a function of
Na content and temperature, eventually sampling a vast compositional,
spatial, and temporal scale. kMC can also be used to examine the
structural evolution of nano-particles as well, as demonstrated by Li
et al. [39].

kMC is based on a stochastic algorithm that randomly samples a
large number of microstates of a given system, utilizing the ergodic
principle to arrive at statistically-averaged transport properties. A com-
parison between MD and kMC is shown in Table 1 and an example of
kMC is presented in Fig. 1. Compared to MD, kMC is a fairly general
simulation algorithm that can be applied to coarse grain material prop-
erties and contribute to multi-scale modeling efforts [44–46]. Thus, the
chief advantage of kMC over MD is the ability of kMC to access ‘‘long’’
timescales (∼ms) and ‘‘large’’ lengthscales (∼μm) compared to what is
usually accessible by MD (<μs, ∼nm) [47].

Unlike MD simulations, which require the explicit integration of
the equation of motion for all species in the system, kMC selectively
propagates transition events based on a simplified model, resulting
in significantly improved computational efficiency. Furthermore, MD
simulations encounter challenges in effectively describing rare events,
such as ion migrations or reaction processes, the former being a crucial
aspect in studying ion diffusion for applications, such as rechargeable
batteries, fuel cells, and electrolyzers. As shown in Fig. 1, the migration
time of Na ions in Na1+xZr2PxSi3-xO12 can span a wide time-scale from
sub-picoseconds to microseconds, depending on factors, such as tem-
perature and composition. Additionally, other processes, for example,
chemical reactions can occur over extended periods, hence presenting
clear challenges in the applications of MD methods.

Two main kMC algorithms have been proposed: (i) kMC with rejec-
tion (r-kMC) [48] and (ii) rejection-free kMC (rf-kMC) [26]. The former
algorithm is similar to the Metropolis algorithm [48] which can select
or reject a transition event using a probability estimate. In rf-kMC, a
transition event is always executed based on a ‘‘list’’ of probabilities.
Thus, rf-kMC is computationally more efficient than r-kMC, especially
when transition rates are low (i.e., event rejection rates are high).

There are several software packages to perform kMC simulations
[49–60], including codes that target higher efficiency kMC algorithms
[61–67], and those that construct novel models to compute accurate
transition rates [68–72].

Although there are numerous advantages to employing kMC to
investigate ion transport in solid-state materials, it is important to
mention that in kMC, all transition events must be known a priori,
and a model is typically required to efficiently compute transition
rates between different microstates. Constructing such a model is often
a nontrivial task, and it requires additional expertise and significant
effort. Consequently, researchers often resort to developing in-house
codes to address this challenge, leading to much slower progress in
the advancement of this field compared to ‘‘plug-and-play’’ MD simula-
2

tions. Hence, it is essential to develop kMC workflows that are flexible b
and can be ‘‘tailored’’ to any given system. These kMC workflows
should potentially include modules for generating all possible transition
events, comprehensive models for the swift and accurate computation
of transition rates for each event. These workflows should also include
robust kMC solvers.

Here, we present our python-based code kMCpy1 to simulate
the kinetic properties of materials, with inputs from first principles
calculations. Specifically, we implement a local cluster expansion (LCE)
model [29,30] to compute migration barriers in crystalline materials
(within the transition state theory framework), where the model is
fitted to calculated barriers from accurate first-principles calculations.
kMCpy contains a rf-kMC solver and related python classes to extract
ion transport properties, such as diffusivities, conductivities, etc. In
addition, kMCpy includes the following features:

• kMCpy is fully developed using python [73,74]. It is compatible
with packages that are widely used in computational materials
science, such as Pymatgen [75]. kMCpy is highly flexible and is
easy to be adapted to any materials system.

• Cross Platform: kMCpy supports most ‘‘mainstream’’ operating
systems, such as Windows, macOS, and Linux/UNIX, in both
x86/64 and ARM architectures. Therefore, kMCpy is POSIX com-
pliant.

• Modular Code Structure: kMCpy is written as modulus, which
can be easily modified and ported/integrated into any specific
application.

• Ease of Use: All input and output data are supplied using human-
readable JSON format, which can be easily parsed and generated
by computers.

• Performance: The computationally-intensive routines of kMCpy
are translated into optimized machine code at runtime using
Numba [76], which is a just-in-time (JIT) compiler designed to
increase computational performance of python codes.

The paper is structured as follows: Section 2 deals with the theoreti-
cal background to compute transport properties in crystalline materials,
Section 3 provides an overview of the kMCpy code, Section 5 describes
the performance of kMCpy, and Section 6 compiles our concluding
remarks and possible future developments of kMCpy. All nomenclature
used throughout the manuscript is listed in the Appendix. kMCpy is
highly flexible and easy to use, making it exceptionally useful for
investigating kinetic phenomena in crystalline materials.

2. Theoretical background

Ionic transport in solids is a stochastic process, occurring through a
series of correlated/non-correlated migration events (or ionic ‘‘hops’’),
which can be effectively modeled using the kMC formalism. The local
energy landscape around the migrating ion determines the ease of
migration within the solid. Quantifying macroscopic ionic transport of
a given chemical species in a given material is usually done in terms
of ionic diffusivities and/or ionic conductivities (see below), both of
which can be evaluated using kMC [29].

1 kMCpy is an open-source code developed under the MIT license and can
e accessed at: https://github.com/caneparesearch/kMCpy

https://github.com/caneparesearch/kMCpy


Computational Materials Science 229 (2023) 112394Z. Deng et al.
Fig. 1. Length scale and time scale of kMC simulations: Panel a shows the length scale of a kMC simulation of an example: Na1+xZr2SixP3-xO12 with periodic boundary condition,
ranging from 18,432 to 21,504 atoms depending on the value of x. Panel b depicts a snapshot of kMC simulation colored with Na-ion hopping probability from 0 Hz (blue)
to 5 × 107 Hz (red) at 573 K, at composition x = 1.5. Panel c presents the average time costs for each Na-ion hop, as well as the total simulation time for this material. Each
data point in panel c consists of an average of 50 kMC simulations and each kMC simulation included 2,048,000 equilibration steps, followed by 12,288,000 production steps for
statistical analysis. Each step is a Na-ion migration.
Before understanding how a typical kMC simulation progresses,
we briefly overview some of the fundamentals of ion transport in
solids. The macroscopic measure of mobility of a migrating species is
determined by the chemical diffusivity (𝐷𝑐), which relates to the flux
and conductivity of the species through Fick’s law [77,78], as stated in
Eq. (1).

𝐽 = −𝐷𝑐∇𝐶 (1)

where 𝐽 is the flux of the migrating species, and 𝐶 is the composition
of the mobile species defined as the number of migrating ions per unit
volume. The chemical diffusivity of the migrating ion relates to the
jump diffusivity (𝐷𝐽 ) through the thermodynamic factor 𝛩 of Eq. (2).

𝐷𝑐 = 𝐷𝐽𝛩 (2)

𝛩 measures the deviation of the interaction between migrating ions
from ideal behavior and is given in Eq. (3)

𝛩 =
𝜕
(

𝜇
𝑘B𝑇

)

𝜕 ln 𝑥
(3)

where 𝜇 is the chemical potential, 𝑘B is the Boltzmann constant, and 𝑥
is the mole fraction of the migrating species.

𝐷𝐽 of Eq. (2) is proportional to the mean squared displacement of
the center of mass of the mobile species, as mathematically described
in Eq. (4).

𝐷𝐽 =

(
∑

𝑖 𝑟𝑖
)2

2𝑑𝑁𝑡
(4)

where 𝑑 is the dimensionality of the diffusion process, 𝑁 is the number
of diffusing species, and 𝑡 is the time taken for diffusion. Further-
more, from the square of displacements of the migrating ions, one
can also calculate the tracer diffusivity (𝐷∗, Eq. (5)), which excludes
cross-correlation effects between the migrating ion [30].

𝐷∗ =
∑

𝑖 𝑟𝑖
2

2𝑑𝑁𝑡
(5)

The ionic conductivity 𝜎 can be then computed via the Nernst–Einstein
relationship:

𝜎 =
𝑒2𝐶𝐷𝐽
𝑘𝐵𝑇

(6)

where 𝐶 is the number of migrating species per unit volume.
Therefore, the cross-correlation between migrating ions can be

quantified from the ratio of 𝐷∗ and 𝐷𝐽 , which is called the Haven’s
ratio (𝐻 ) [79]. Note that H does not measure the correlation between
3

𝑅 𝑅
subsequent hops of a single ion that is migrating, i.e., the deviation
of the trajectory of a single migrating ion from a fully random walk.
This deviation from a fully random walk is measured by the correlation
factor (𝑓 ) of Eq. (7).

𝑓 =
∑

𝑖 𝑟𝑖
2

𝑁𝑛𝑎2
(7)

where 𝑟𝑖 is the net displacement of a migrating ion after 𝑛 hops, while
𝑎 is the average distance for a single hop. Therefore, an accurate
calculation of the ionic transport properties requires the sampling of
a large enough number of migration events, which requires that all
mobile species are tracked during the simulation.

One of the important parameters required by a kMC simulation is
the migration barriers (𝐸𝑏s), which are the energy barriers that the
mobile ion must overcome to complete a successful hop. 𝐸𝑏 ultimately
determines the probability of occurrence of a given ionic hop. Typi-
cally, 𝐸𝑏s are evaluated using the nudged elastic band (NEB) method
in combination with density functional theory (DFT) [80,81]. In an NEB
calculation, one performs a constrained relaxation of a specific number
of virtually connected ‘‘images’’, between the initial and final positions
of a migration event, along a guessed minimum energy pathway (MEP).
The relaxation is constrained to maintain a uniform spacing between
the images (i.e., as uniform as possible), through the addition of
fictitious spring forces. Other tools, such as force fields and machine-
learned interatomic potentials, can also be used to determine 𝐸𝑏 instead
of DFT, and kMCpy is also compatible with such tools.

Note that 𝐸𝑏 in solids not only depends on the local environment of
the migrating ion but also the direction of the hop. Hence, to remove
any direction-dependence of a hop, we resort to the so-called kinetically
resolved activation barrier (𝐸KRA) of Eq. (8) proposed by van der Ven
et al. [29].

𝐸KRA = 𝐸𝑏[𝑖 → 𝑗] − 1
2
𝛥𝐸end (8)

where 𝐸𝑏[𝑖 → 𝑗] is the calculated 𝐸𝑏 (e.g., with NEB) for a site 𝑖 to site
𝑗 hop and 𝛥𝐸end is the absolute difference between the computed DFT
total energies of the initial and final positions (i.e., the endpoints).

In principle, the 𝐸KRA has to be calculated for all possible migration
events that can occur in a solid (as the local bonding/coordination
environment changes for example). However, calculating 𝐸𝑏 for all
possible hops via NEB calculations is computationally intensive and
often impractical. One strategy to circumvent the computational ob-
stacles of NEB calculations is that of the LCE approach. An LCE is
normally used to construct a simplified lattice Hamiltonian, which can



Computational Materials Science 229 (2023) 112394Z. Deng et al.

o
g
a
o

g

−
s
f

A
t
o

Fig. 2. Example of clusters that are typically encountered in a cluster expansion
verlaid over a representative lattice. Within a cutoff distance from the center of a
iven lattice site, local orbits are drawn which extract the different interactions, such
s point (red and blue dots), pair (orange dots), and triplet (gray dots). For each lattice,
nly the symmetrically-unique clusters are used to construct the cluster expansion.

enerate approximate 𝐸𝑏 quickly (by estimating a 𝐸KRA), based on the
local configuration(s) of the moving and nonmoving species, which is
defined in Eq. (9) [29,82].

𝐸KRA = 𝑉0 +
∑

𝛼
𝑉orbit𝜙orbit (9)

where

𝜙orbit =
∏

𝑖 ∈orbit
𝜎𝑖 (10)

Here, an orbit implies a cluster of sites, which for example, can be a
point, a pair, or a triplet, or higher-order terms, as depicted in Fig. 2. 𝜎
is the occupation variable of a given site within a cluster, whose value
depends on the basis set used. For example, 𝜎 can take the value of
1 or +1 to indicate the presence or absence of an atom at a given
ite. To account for local interactions, orbits are usually truncated at
inite distances from a given site. In Eq. (9), the terms 𝑉0 and 𝑉orbit

are the kinetic effective cluster interactions (KECIs). The values of the
KECIs are determined by fitting Eq. (9) a set of NEB-calculated 𝐸KRA.
Note that instead of an LCE, surface models, thin-film models, or coarse
grain models [44,45] can also be used for estimating 𝐸𝑏.

After determining 𝑉orbit and 𝑉0 in Eq. (9), one proceeds with kMC
simulations, whose workflow is shown schematically in Fig. 3(a). In
kMCpy, we have implemented the rf-kMC method, also known as the
Bortz–Kalos–Lebowitz (BKL) algorithm [26]. Specifically, we list the set
of all possible migration events in a given solid and their corresponding
probabilities, amongst which one migration event is selected. Once a
hop is selected, the hop is always executed, and subsequently, the list
of possible migration events is updated.

The typical procedure for the BKL method is summarized in the text
below and Fig. 3. Note that Fig. 3 does not include the equilibration
process.

1. Initialization: In this step, a representative structure is generated,
which contains a fixed concentration of mobile ions and va-
cancies (assuming a vacancy-mediated migration mechanism).
These structures can be obtained from canonical Monte Carlo
(CMC), grand-canonical Monte Carlo (GCMC) [83] simulations,
random structure generators [38], or other structural enumera-
tion techniques. During the initialization, a tracker is also set,
which keeps track of the migration observables, such as the
mean squared displacement (MSD) of the diffusing species, the
location of the center of mass, 𝐷𝐽 , and 𝑓 .

2. Event proposal: A list of probabilities (𝛤𝑚) is generated for all
possible migrating paths (𝑚) available for all mobile ions in
the simulation box. This list also includes hops that may not
4

Fig. 3. a Flow chart of the kMC process. 𝑖 kMC steps are repeated with each kMC
simulation starting from a different initial structure (i.e., 𝑗 initial structures in total). b

ll migration events are listed on a hypothetical axis, with the solid line representing
heir hopping probabilities (𝛤 ). An event no. 𝑘 is then randomly proposed based
n a random number 𝜌. 𝛤tot (𝑘) is a cumulative sum of events from no. 0 to no. 𝑘

(i.e., 𝛤𝑡𝑜𝑡(𝑘) =
∑𝑘

𝑚=0 𝛤𝑚). 𝛤𝑡𝑜𝑡 is the sum of the hopping probabilities of all migration
events.

be feasible. For example, if both the initial and final sites of a
migration event (path) are occupied by an atom (instead of one
of the sites being vacant), the value of 𝛤𝑚 is set to 0. The hopping
probability (𝛤 ) for each migration event is calculated using the
transition state theory [84] via Eq. (11).

𝛤 = 𝜈∗ exp
(

−𝐸𝑏
𝑘𝐵𝑇

)

(11)

From Eqs. (8) and (9), it is possible to quickly generate 𝐸𝑏 for
every possible hop. 𝜈∗ is the prefactor and is usually assumed to
be of the order of 1011 to 1013 Hz [29,85]. 𝑇 is the simulation
temperature.
Following the generation of the probability list, a migration
event (𝑘) is chosen based on a random number (0 < 𝜌 < 1),
such that it satisfies Eq. (12).

1
𝛤tot

𝑘−1
∑

𝑚=1
𝛤𝑚 < 𝜌 ≤ 1

𝛤tot

𝑘
∑

𝑚=1
𝛤𝑚 (12)

where 𝛤tot is the sum of all the individual probabilities of all
migration events. This step is shown schematically in Fig. 3(b).



Computational Materials Science 229 (2023) 112394Z. Deng et al.

t
t
l
p
t
s
p
o
T
p
i
p
i

Fig. 4. Left Workflow of kMCpy package. Right python classes of kMCpy used for each stage of execution. Note that the initial structures for running kMC simulations are
obtained from a structure enumerator. Migration barriers are computed from DFT-NEB calculations (dashed boxes), or even from MLIP-NEB calculations. In the current version,
only the LCE model has been implemented.
3

3

E
b
f
F
a
S
N
T
w
o
e
i
f
f
c

3

3. Update event and tracker : After an event is chosen and executed,
the time step (𝛿𝑡) is updated by drawing another random number
(0 < 𝜁 < 1) as shown in Eq. (13).

𝛿𝑡 = − 1
𝛤tot

ln 𝜁 (13)

Subsequently, the occupation vector, the new event list, and
their corresponding probabilities, the displacement vector(s), the
location (𝑠) of the mobile ions, the location of the center of mass,
and the hop counter are updated.

A single kMC pass includes repeating the event proposal, updating
he event, and updating tracker steps the same number of times as
he number of mobile ions in the initialized structure. Generally, a
arge number of kMC passes are required to accurately predict trans-
ort properties. For example, Deng et al., undertook ≈106 kMC passes
o simulate Na-transport in superionic conductors over a millisecond
cale [32]. After running a sufficiently large number of kMC passes,
roperties, such as 𝐷𝐽 , 𝐷∗, 𝐻𝑅, and 𝑓 are estimated. Thus, a collection
f kMC passes for a single initial structure is referred to as a kMC run.
o get a better estimate of the transport properties at a given com-
osition, kMCpy also calculates the properties as the initial structure
s varied 𝑗 times (i.e., 𝑗 kMC runs). This ensures that the transport
roperties calculated represent a statistical estimate that is observed
5

n experiments. m
. Overview of kmcpy

.1. Workflow

The workflow of kMCpy is shown in Fig. 4. Note, the NEB (Nudged
lastic Band) barriers and initial structures, as shown in the dashed
oxes of Fig. 4 are inputs for kMCpy. The specific python classes
or each action are shown as gray boxes on the right-hand side of
ig. 4. kMCpy contains functions to analyze crystal structures, construct
n LCE model, and generate a list of possible migration events (see
ections 3.2 and 3.3). Starting from a list of DFT-NEB (or even MLIP-
EB) computed barriers, kMCpy fits an LCE model (see Section 3.4).
he constructed model and events are then used to run kMC simulations
ith input structures that are either the thermodynamic ground state(s)
r any other user-defined structures (Section 3.5). The trajectory of
ach mobile species is stored and analyzed with a Tracker class as
mplemented in kMCpy (Section 3.6). Examples of input and output
iles are provided in Section 3.7. All python classes mentioned in the
ollowing sections can be stored in a human-readable JSON format and
an be re-initialized after each stage.

.2. Model construction

Before running a kMC simulation, a representative lattice model

ust be constructed to compute the barriers efficiently for any local



Computational Materials Science 229 (2023) 112394Z. Deng et al.

f
f

environment, and the current version of kMCpy uses the LCE frame-
work. However, the modular nature of kMCpy is such that other lattice
models can also be used and integrated.

The LCE is implemented in the LocalClusterExpansion class
in kMCpy.model. The local environment in the LCE model is de-
scribed using a migration unit (MigrationUnit), which is defined as
a representative collection of sites centered around a given activated
state (AS), where possible migration events can take place. The mi-
gration unit is generated using the user-specified cutoff radius. As a
result, when a local environment is imported, an ‘‘occupation vector’’
(see Appendix) will be constructed based on the atomic species at each
site.

Subsequently, all clusters within a migration unit are found by
enumerating all points, pairs, triplets, etc. via a cutoff radius (specified
by the user) for each type of cluster. All symmetrically equivalent
clusters are then grouped as orbits, which become elements in the
‘‘correlation vector’’ (see Appendix). Clusters and orbits are coded
into the kMCpy.model as the Cluster and the Orbit classes. In
addition to the species and the atomic coordinates, Cluster and
Orbit both have functions to compute ‘‘correlation’’ (see Appendix)
for a given orbit based on the occupation of sites.

3.3. Events’ generation

A kMC simulation needs a list of all possible migration events within
a given simulation cell before its execution. Therefore, in kMCpy, we
handle migration events using the Event class in kmcpy.event.
Event stores the indices of two sites (e.g., initial and final sites)
involved in the migration event and the indices of all sites within the
surrounding migration unit, i.e., local environment indices. Event also
has built-in functions to compute the correlation vector, the migration
barrier, and the hopping probability after an occupation vector has
been assigned.

kMCpy enumerates all Event objects, before the kMC run. This is
done via a wrapper function, EventGenerator class as implemented
in kmcpy.event_generator, which receives the LocalClus-
terExpansion as input and loops through all migration units in the
whole simulation cell to generate all possible events. From a given
identifier of mobile species (i.e., the mobile_ion_identifier pa-
rameter), two site indices involved in the migration event, namely, sites
that the ion hops from and hops into, are identified. Subsequently,
the indices of all sites in the current migration unit are stored for
calculating the migration barrier.

3.4. Model fitting

To fit DFT-NEB barriers using the LCE model, we have implemented
the Fitting class in kmcpy.fitting. This function performs fitting
by interfacing with the python package scikit-learn [86]. kMCpy
also stores fitted results (i.e., the KECIs) in a portable JSON format. The
current implementation of kMCpy uses the ‘‘LASSO’’ regression [87]
to perform the fitting. Indeed, LASSO limits the selection of orbits in
the fit to the most important ones. LASSO requires a user-specified 𝛼
parameter to reduce the total number of selected orbits. The Fitting
class stores the fitting history, e.g. 𝛼 and weights used during LASSO
regression, for keeping a record and fine-tuning the LCE.

Note that an LCE typically fits the 𝐸KRA that is obtained from NEB
calculations. Therefore, the 𝛥𝐸end term in Eq. (8) can be computed
either from CMC (e.g., by interfacing other codes, such as CASM [88],
smol [89], and CLEASE [90] or by fitting a separate LCE model.
kMCpy has the flexibility to adopt either approaches to determine 𝐸end.
In the case an LCE is used for fitting values of 𝐸end too, then the 𝐸end
data extracted from NEB calculations is used as an input for the fitting
6

process.
3.5. Kinetic Monte Carlo

The KMC class in kmcpy.kmc can be used to perform kMC sim-
ulations. Multiple (e.g., 50) kMC runs should be done to eliminate
the dependency of the results on the starting configurations. Initial
structures of kMC runs are taken either from the thermodynamic
ground state(s) (e.g., from CMC or GCMC simulations), or from a
structure enumerator (see Fig. 4). Auxiliary tools are provided in
kmcpy.tools.gather_mc_data to extract the occupation vectors
from a structure in the crystallographic information file (CIF) format.

The general process of rf-kMC is described in Fig. 3, and an example
of a standard output of both the initialization and the execution pro-
cesses of kMC is shown in Fig. 5a and b. The KMC class is first initialized
using a size specification of the simulation (super)cell, the initial occu-
pations, the fitted model, the generated events, and a reference crystal
structure. When the LCE model is used, information about clusters,
orbits, and the KECIs is provided. kMCpy then ‘‘walks’’ through all
available migration events and evaluates the occupations, correlation
vectors, and hopping frequencies, given a simulation temperature and
a 𝜈∗.

Upon initialization of the kMC, the KMC.run() function is called
to perform the kMC simulation by supplying the total number of
equilibration and sampling steps, respectively. The equilibration steps
are not explicitly shown in Fig. 3a. A Tracker object is initialized
once the equilibration process is complete (see Section 3.6). As shown
in Fig. 3b, for each kMC step, an event 𝑘 is randomly proposed using
KMC.propose(), based on Eq. (12).

After the proposed event is executed, the related occupations, corre-
lations, and hopping frequencies are updated. Since a given site may be
involved in multiple migration events, all events with sites associated
with the proposed event are updated. The number of events that require
updation after a proposed event is defined as the coupling strength of
events, which can influence the computational performance of kMC
(see Section 5). We use a pre-computed table (event_kernel) to
quickly identify all events that need to be updated.

3.6. Tracking diffusion

To follow the displacements of all mobile species with respect to
their original positions and to count the number of hops of each mobile
ion, kMCpy uses a Tracker class in kmcpy.tracker. This class
is activated only after the equilibration is complete. The Tracker
is initialized with the initial occupation vectors, a reference crystal
structure of the simulation cell, the formal charge on migrating species,
the dimensionality of the overall diffusion process, the average hopping
distances (in Å), the simulation temperature, and 𝜈∗. The initial location
of each migrating species is recorded and their displacement vectors
and counters are set to zero during initialization. During each kMC
step, Tracker.update() updates the displacement vector (taking
into account periodic boundary conditions) and the hopping counter of
the migrating species involved in a proposed event.

Using Eqs. (2)–(7) in Section 2, Tracker computes transport prop-
erties, such as MSD, 𝐷𝐽 , 𝐷∗, 𝜎, 𝑓 , and 𝐻𝑅 from the displacements of
all migrating ions. The chemical diffusivity, 𝐷𝑐 (Eq. (2)) can be com-
puted once 𝛩 is identified for systems with variable compositions, such
as electrodes [30]. Tracker.summary() and Tracker.write_
results() routines print and save the simulation results, respec-
tively.

3.7. Input and output files

The inputs required by kMCpy (Fig. 4a) can be prepared in JSON
ormat, through the use of Jupyter notebooks for instance. Sample input
iles are provided in the input_example folder of our GitHub reposi-

tory (https://github.com/caneparesearch/kMCpy). Further, a command

line wrapper executes kMCpy from the command line, which can be

https://github.com/caneparesearch/kMCpy


Computational Materials Science 229 (2023) 112394Z. Deng et al.
Fig. 5. Screenshots of initialization (KMC.initialization(), in a) and execution (KMC.run(), in b) of kMC. KMC.initialization() prints the input parameters and
KMC.run() shows the computed results. A Tracker object is initialized and subsequently called at the end of KMC.run(). c shows the graphic user interface (GUI) of kMCpy
relying on the python library Gooey.
found in kmcpy.executable.
wrapper. Users can also customize their workflow by importing
specific modules described in the previous sub-sections.

An example of a standard output of KMC.initialization()
and KMC.run() is shown in Fig. 5a and b. kMCpy prints the infor-
mation imported from the JSON input files and sets the parameters
described in Sections 3.5, 3.6, and Fig. 3.

kmcpy.executable.gui_wrapper offers a graphical user in-
terface (GUI) as shown in Fig. 5c, which builds upon the python
library Gooey [91]. This GUI covers all required and optional ar-
guments for each step, providing a convenient way to test different
parameters and for educational/demonstration purposes as well.

A required task in the Actions box must be chosen in the GUI
interface, following the descriptions in Sections 3.2 to 3.5. Next, all
essential input parameters required for this task must be provided.
For example, if KMCSimulation is chosen, one must provide: the
working directory, the initial occupation, the original crystal structure,
the fitted LCE model, the generated events, a value of 𝜈∗, and the
simulation temperature. The documentation is available via a website
(https://kmcpy.readthedocs.io) with details on all input parameters to
run kMCpy. By clicking the ‘‘Start’’ button, kMCpy will perform the
selected task with the standard output of the simulation (similar to the
command line output of Fig. 5a and b) displayed in a separate pop-up
window.

4. Practical tips on using kmcpy and data analysis

Although kMC is conceptually straightforward, several considera-
tions must be taken into account when applying this method in practice.
These are:

1. During the construction of the model, the selection of an ap-
propriate cutoff value is paramount to ensure that the model
captures most of the diffusion properties of the relevant chemical
species.

2. Identifying minimal sizes of the basis set that can accurately
represent the NEB barriers is another important consideration.
The choice of cutoffs for clusters determines the size of the basis
7

set, with larger cutoffs including more clusters in the model.
However, regularization techniques must be employed to select
only the most representative clusters, with the regularization
process, for example, controlled by the ‘‘𝛼’’ parameter in the
LASSO procedure. In addition, as shown in Fig. 6c, an extremely
large basis set may worsen the performance of kMC simulations.

3. In the fitting process, it is important to minimize the fitting error
and ensure that the number of non-zero KECIs does not exceed
the number of NEB barriers.

4. As a rule of thumb, it is important to limit the root mean square
(RMS) error of fitted barriers below ±60 meV, as this ensures
an acceptable level of accuracy corresponding to an order of
magnitude error in diffusivity [92].

By adhering to these guidelines, users can improve significantly the
reliability and accuracy of the kMC method in practical applications.

In the kMC process, properties such as 𝐷𝐽 , 𝐷∗, 𝐻𝑅, and 𝑓 are
efficiently computed with kMCpy. However, when it comes to calcu-
lating the mean square displacement (MSD), used to compute values
of diffusivities, multiple approaches can be invoked. A widely used
approach is the so-called direct method:

MSD(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
(𝑟𝑖(𝑡) − 𝑟𝑖(0))2 (14)

where 𝑁 is the total number of particles.
Another approach is the window average method, which offers an

alternative way of calculating the MSD:

MSD(𝜏) = 1
𝑁

𝑁
∑

𝑖=1

1
𝑁steps − 𝜏

𝑁𝑠𝑡𝑒𝑝𝑠−𝜏−1
∑

𝑘=0
(𝑟𝑖(𝑘 + 𝜏) − 𝑟𝑖(𝑘))2 (15)

where 𝜏 is the window size in time steps, and 𝑁steps is the total
number of time frames. This method, represented by Eq. (15), involves
computing an average of the MSD across all possible window lengths
𝜏 employed throughout the simulation. By considering various win-
dow lengths, this method provides a broader perspective on particle
displacement, enabling a comprehensive understanding of diffusivity.
However, it is worth noting that the window average method can be
computationally intensive, especially when dealing with large datasets.

https://kmcpy.readthedocs.io


Computational Materials Science 229 (2023) 112394Z. Deng et al.

f
S
s

M
R

Fig. 6. a shows the average computing time, per kMC pass (left 𝑦-axis, orange lines) and per kMC step (right 𝑦-axis, black lines), as a function of the total number of atoms
or kMC simulations of Na1+xZr2PxSi3−xO12, scaling from 1 × 1 × 1 (42 atoms) to 10 × 10 × 10 supercells (42,000 atoms). The details of this model can be found in Ref. [32].
olid and dashed lines refer to the time consumption with and without Numba, respectively. The LCE model contains 19 unique orbits and 212 possible clusters, with a coupling
trength of 12. b shows the relationship between the time consumption and coupling strength between events (defined in Appendix) performed on an 8 × 8 × 8 supercell lattice.
c describes the effect of basis set size (number of clusters/orbits in LCE model) on simulation time, using the 8 × 8 × 8 supercell.
l

f

To mitigate this computational burden, an efficient approach is to
implement the Fast Fourier Transform (FFT) algorithm, which can
significantly accelerate the calculations involved in the window average
method.

Presently, the implementation of kMCpy uses primarily the direct
method for computing the MSDs. However, future versions will include
the window average method.

5. Performance of kmcpy

kMCpy has been developed in python, a high-level, human-
interpretable language that combines flexibility and ease of program-
ming. Since python is one of the most widely used programming
languages [73,74] both in the fields of materials informatics and data
science, it provides a set of readily available tools and libraries that
can be used to accelerate the development of new codes and libraries.
Among them, we utilize a JIT compiler, Numba [76], to increase
the computational performance of kMCpy. Specifically, Numba trans-
lates the most numerically demanding part of kMCpy into optimized
machine code.

We emphasize that kMCpy is a serial code, i.e., a single kMC run
is executed on a single CPU core. However, multiple kMC runs can
be executed simultaneously on a multi-core platform, such as a high-
performance computing server or on the cloud. For example, different
initial structures can be generated for a system and a kMC run for each
initial structure can be run in parallel, thus reducing compute time.

Computationally, the intensive part of kMCpy is evaluating the
correlation vector for each Event. Therefore, the size of the basis set
(i.e., number of clusters and orbits), the total number of events, and
the coupling strengths between different events (see Appendix) can
crucially influence the determination of the correlation vector and the
computational performance. For example, the basis-set size controls
the computational cost of updating the correlation vector of a single
event, whereas the total number of unique events and the coupling
strengths between events set the total number of events to be updated
during each kMC step. These quantities are usually coupled with each
other, i.e., larger cutoff radii usually lead to larger basis sets, and
in turn, stronger coupling between events, resulting in an increased
computational cost of the kMC run.

We benchmarked,2 the computational performance of kMCpy with
the data compiled in Table 2, which shows the time required to prepare

2 All benchmarks were performed on a 2020-year model 13-inch Apple
acBook Pro with a M1 chipset (8 core CPU + 8 core GPU) and 16 GB of
AM.
8

Table 2
Time (in s) distribution for bootstrapping and running a kMC simulation
of a test model. Details of hardware information and input model to
perform these benchmarks are mentioned in footnotes 2 and 3.
Action Time elaspsed

Model Generation (212 clusters) 2.10
Model Fitting (19 orbits) 2.60
Events Generation (6144 events) 1.31
kMC simulation (100 passes/51,200 steps) 168.00

inputs and run a very short simulation on a test system.3 The process
of input preparation includes the construction of the model, fitting of
the model, and events generation, which in total takes less than 10 s.
100 kMC passes (51,200 steps per pass) on this model takes ∼3 min,
indicating that the time required for preparing the input is generally
marginal compared to the kMC simulation itself.

Eq. (16) shows fitted dependencies between the simulation time and
the three major factors:

𝑡 ∝ 𝑓Numba(𝑁cell) ×𝑁1.16
cluster ×𝑁1.01

cell ×𝑁1.10
coupling (16)

where 𝑁cluster , 𝑁cell, 𝑁coupling are the number of clusters, the size of
the supercell, and the coupling strength, respectively. 𝑓Numba denotes
the acceleration effect using the Numba routines on the computational
time. The benchmark results are shown in Fig. 6.

The average simulation time using different cell sizes (indicated by
the total number of atoms per simulation box) is depicted in Fig. 6a.
Without Numba, the elapsed time per kMC step remains approximately
constant ∼10−1 s (dashed black line). Numba accelerates significantly
the kMC simulation by factor of ∼2 (10−3 s, solid black line). The
speedup by Numba is weakened when the simulation cell becomes
arger. Therefore, Numba can enable access to longer and larger scale

simulations with kMCpy [32]. As 1 kMC pass is just the total number
of available sites within the simulation cell, the run time per kMC pass
grows linearly when the cell size (i.e., the number of atoms) becomes
larger. Figs. 6b and 6c demonstrate the effect of the coupling strength
between events, and the basis set size, which also contributes to a quasi-
linear increase towards the run time of each kMC pass. These results
show that the time complexity of the implemented kMC algorithm is
𝑂(∼ 𝑁).

3 A LCE model for Na ion migration was built with a ∼6 Å cutoff radius
or point, pair and triplet clusters on Na1+xZr2PxSi3-xO12 yielding a total of

19 unique orbits and 212 possible clusters. The LCE model was fitted with
data from DFT-NEB calculations. 6144 distinct Na-ion hopping events were
generated in a 8 × 8 × 8 supercell lattice.



Computational Materials Science 229 (2023) 112394Z. Deng et al.
6. Conclusion

In summary, we presented kMCpy, a lightweight open-source
python package to perform kMC simulations of ionic transport in
crystalline solids, with inputs from DFT calculations. kMCpy and its im-
plemented workflow provide a framework for the scientific community
to predict the transport properties of any crystalline solid with high
accuracy and performance. The design of kMCpy should facilitate its
use on most available computational platforms from standard laptops
to high-performance supercomputers. The modular framework makes it
highly customizable and easily programmable. By utilizing the JIT com-
piler –Numba, kMCpy achieves high computational performance. Both
the input and the output files of kMCpy rely on the human-readable
JSON format, which is easy to distribute.

Future developments of kMCpy include: (i) the use of GPU-based
acceleration for improved computational performance, (ii) the develop-
ment of a thermodynamic (CMC/GCMC) module and a built-in struc-
ture enumerator, (iii) more fitting approaches for cluster expansion
in the form of modularized Fitting objects, and (iv) additional
models for the evaluation of 𝐸KRA that are alternative to LCE. We
hope that we can achieve a fully self-consistent, highly robust, and
high-performance framework for simulating materials’ kinetics using
the kMC approach without sacrificing the user-friendliness of kMCpy.
In conclusion, kMCpy exhibits a combination of flexibility and user-
friendliness, making it useful for investigating the materials′ kinetics
of crystalline systems.

CRediT authorship contribution statement

Zeyu Deng: Conceptualization of the study, Methodology, Software
development, Writing the initial draft. Tara P. Mishra: Software devel-
opment, Writing the initial draft. Weihang Xie: Software development,
Writing the initial draft. Daanyal Ahmed Saeed: Software develop-
ment, Writing the initial draft. Gopalakrishnan Sai Gautam: Method-
ology, Writing the initial draft. Pieremanuele Canepa: Conceptualiza-
tion of the study, Methodology, Project management, Procurement of
funding, Writing the initial draft.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Pieremanuele Canepa reports financial support was provided by
National Research Foundation.

Data availability

Data will be made available on request.

Acknowledgments

We acknowledge funding from the National Research Foundation,
Singapore under his NRF Fellowship NRFF12-2020-0012. ZD acknowl-
edges the support from his Lee Kuan Yew Postdoctoral Fellowship
22-5930-A0001. The computational work was performed on resources
of the National Supercomputing Centre, Singapore (https://www.nscc.
9

sg).
Appendix. Nomenclature

• Site: 𝑖 ∈ {0, 1,… , 𝑁 −1} is a site in a simulation cell with 𝑁 sites.
𝑖 is a unique global index of a site.

• Occupation: in a Chebyshev basis 𝜎𝑖 has a value of ±1 for site
𝑖, e.g., occupied (−1) or unoccupied (+1), or species A (−1) and
species B (+1).

• Occupation Vector: �⃗� = [𝜎0, 𝜎1,… , 𝜎𝑁−1] is a vector of occupa-
tions in a simulation cell.

• Migration unit: 𝑀 = [𝑖0, 𝑖1,… , 𝑖𝑚] is a collection of all sites
within a specific cutoff radius around the center of a migration
unit, where 𝑚 is the total number of sites within that migration
unit. There are multiple migration units in the simulation cell.

• Sublattice Site: 𝑖 ∈ {0, 1,… , 𝑛 − 1} is a site within a migration
unit with 𝑛 sites.

• Distance Matrix: D: Distance matrix of a migration unit is a 𝑚×𝑚
matrix where 𝑚 has been defined above. Matrix elements 𝑑𝑖𝑗 are
the Cartesian distances between site 𝑖 and 𝑗 within a migration
unit.

• Cluster: [𝑖0, 𝑖1,… , 𝑖𝑛] is a collection of sublattice sites (𝑖) within a
migration unit with a length of 𝑛. Presently there are four types
of clusters implemented in the code:
Point: a cluster containing 1 site, 𝑛 = 1;
Pair: a cluster containing 2 sites, 𝑛 = 2;
Triplet: a cluster containing 3 sites, 𝑛 = 3;
Quadruplet: a cluster containing 4 sites, 𝑛 = 4;
Note, the order size of these clusters can be easily extended
beyond 4.

• Cluster Function: 𝜙𝛼(�⃗�) =
∏

𝑖∈𝛼 𝜎𝑖 is a product of all occupations
of all sites that belong to a cluster.

• Orbit, [𝛼[0], 𝛼[1],… , 𝛼[𝑚]] is a collection of symmetrically equiv-
alent clusters with a multiplicity of 𝑚 within a migration unit.

• Correlation: 𝜙𝑂(�⃗�) =
∑

𝛼∈𝑂 𝜙𝛼(�⃗�) is the summation of clus-
ter functions of all symmetrically equivalent clusters within a
migration unit that belongs to an orbit.

• Correlation Vector:
𝜙(�⃗�) = [𝜙𝑂[0](�⃗�), 𝜙𝑂[1](�⃗�),… , 𝜙𝑂[𝑛](�⃗�)] (17)

is a collection of all correlations for each orbit within a migration
unit with a length of 𝑛. This is also the basis-set size.

• Cluster Expansion Model:
𝐸(�⃗�) = 𝑉0 +

∑

𝛼
𝑉𝛼𝜙𝛼(�⃗�) (18)

where 𝐸 is the total energy (typically the DFT total energy), and
𝑉0 and 𝑉𝛼 are called effective cluster interactions (ECIs) for each
cluster, which are fitted from first-principles calculations. The
summation polynomials are usually truncated to specific cluster
sizes (e.g., quadruplet, quintuplet, etc.). All clusters belonging to
the same orbit share the same 𝑉𝛼 .

• Local Cluster Expansion Model uses a local cluster expansion
model,

𝐸KRA(�⃗�) = 𝐾0 +
∑

𝛼
𝐾𝛼𝜙𝛼(�⃗�) (19)

where 𝐸KRA is the kinetic resolved activation energy barrier
which is independent of migration directions. 𝐾0 and 𝐾𝛼 are
called kinetic effective cluster interactions (KECIs), which are
fitted from first-principles NEB calculations. The directional de-
pendent activation energy can further be recovered using

𝐸𝑏 = 𝐸KRA(�⃗�𝐴𝑆 ) +
1
2
𝛥𝐸end (20)

where �⃗�𝐴𝑆 is the occupation vector at the activated state and 𝐸𝑏
is the activation energy barrier from initial to final images. 𝛥𝐸end
is the total energy difference between the final and initial images,
respectively:

𝛥𝐸 = 𝐸(�⃗� ) − 𝐸(�⃗� ) (21)
end f inal initial

https://www.nscc.sg
https://www.nscc.sg
https://www.nscc.sg


Computational Materials Science 229 (2023) 112394Z. Deng et al.

R

• Event is a swap of occupation values between two hopping sites.
• Pass is defined as the total number of mutable sites in the

simulation cell.
• Coupling Strength Between Events is the total number of events

that need to be updated after an event has been executed.

eferences

[1] J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins, Nature
267 (5612) (1977) 585–590, http://dx.doi.org/10.1038/267585a0, URL http:
//www.nature.com/articles/267585a0.

[2] M. Karplus, J. Kuriyan, Molecular dynamics and protein function, Proc.
Natl. Acad. Sci. 102 (19) (2005) 6679–6685, http://dx.doi.org/10.1073/pnas.
0408930102, URL https://pnas.org/doi/full/10.1073/pnas.0408930102.

[3] J.L. Klepeis, K. Lindorff-Larsen, R.O. Dror, D.E. Shaw, Long-timescale molecular
dynamics simulations of protein structure and function, Curr. Opin. Struct.
Biol. 19 (2) (2009) 120–127, http://dx.doi.org/10.1016/j.sbi.2009.03.004, URL
https://linkinghub.elsevier.com/retrieve/pii/S0959440X09000372.

[4] S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Electrochemical windows of
room-temperature ionic liquids from molecular dynamics and density functional
theory calculations, Chem. Mater. 23 (11) (2011) 2979–2986, http://dx.doi.org/
10.1021/cm200679y, URL https://pubs.acs.org/doi/10.1021/cm200679y.

[5] Y. Mo, S.P. Ong, G. Ceder, Insights into diffusion mechanisms in P2 layered oxide
materials by first-principles calculations, Chem. Mater. 26 (18) (2014) 5208–
5214, http://dx.doi.org/10.1021/cm501563f, URL https://pubs.acs.org/doi/10.
1021/cm501563f.

[6] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, G. Ceder,
Design principles for solid-state lithium superionic conductors, Nature Mater.
14 (10) (2015) 1026–1031, http://dx.doi.org/10.1038/nmat4369, URL https:
//www.nature.com/articles/nmat4369.

[7] D.R. Herschbach, Molecular dynamics of elementary chemical reactions(nobel
lecture), Angew. Chem., Int. Ed. Engl. 26 (12) (1987) 1221–1243, http://dx.
doi.org/10.1002/anie.198712211, URL https://onlinelibrary.wiley.com/doi/10.
1002/anie.198712211.

[8] I.R. Craig, D.E. Manolopoulos, Chemical reaction rates from ring polymer
molecular dynamics, J. Chem. Phys. 122 (8) (2005) 084106, http://dx.doi.org/
10.1063/1.1850093, URL http://aip.scitation.org/doi/10.1063/1.1850093.

[9] J.F. Lutsko, Stress and elastic constants in anisotropic solids: Molecular dynamics
techniques, J. Appl. Phys. 64 (3) (1988) 1152–1154, http://dx.doi.org/10.1063/
1.341877, URL http://aip.scitation.org/doi/10.1063/1.341877.

[10] F.F. Abraham, D. Brodbeck, W.E. Rudge, X. Xu, A molecular dynamics in-
vestigation of rapid fracture mechanics, J. Mech. Phys. Solids 45 (9) (1997)
1595–1619, http://dx.doi.org/10.1016/S0022-5096(96)00103-2, URL https://
linkinghub.elsevier.com/retrieve/pii/S0022509696001032.

[11] C. Yang, U. Tartaglino, B.N. Persson, A multiscale molecular dynamics approach
to contact mechanics, Eur. Phys. J. B 19 (1) (2006) 47–58, http://dx.doi.org/10.
1140/epje/e2006-00004-9, URL https://link.springer.com/10.1140/epje/e2006-
00004-9.

[12] H. Rafii-Tabar, H. Shodja, M. Darabi, A. Dahi, Molecular dynamics simulation of
crack propagation in fcc materials containing clusters of impurities, Mech. Mater.
38 (3) (2006) 243–252, http://dx.doi.org/10.1016/j.mechmat.2005.06.006, URL
https://linkinghub.elsevier.com/retrieve/pii/S0167663605001043.

[13] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to
Applications, second ed., in: Computational Science Series, (no. 1) Academic
Press, San Diego, 2002.

[14] R.W. Balluffi, S.M. Allen, W.C. Carter, R.A. Kemper, Kinetics of Materials, J.
Wiley & Sons, Hoboken, N.J, 2005.

[15] T. Hansson, C. Oostenbrink, W. van Gunsteren, Molecular dynamics sim-
ulations, Curr. Opin. Struct. Biol. 12 (2) (2002) 190–196, http://dx.
doi.org/10.1016/S0959-440X(02)00308-1, URL https://linkinghub.elsevier.com/
retrieve/pii/S0959440X02003081.

[16] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S.
Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan,
M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales, Comput. Phys. Comm. 271 (2022) 108171, http://dx.doi.
org/10.1016/j.cpc.2021.108171, URL https://linkinghub.elsevier.com/retrieve/
pii/S0010465521002836.

[17] G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gis-
bergen, J.G. Snijders, T. Ziegler, Chemistry with ADF, J. Comput. Chem. 22 (9)
(2001) 931–967, http://dx.doi.org/10.1002/jcc.1056, URL https://onlinelibrary.
wiley.com/doi/10.1002/jcc.1056.

[18] J.C. Phillips, D.J. Hardy, J.D.C. Maia, J.E. Stone, J.V. Ribeiro, R.C. Bernardi,
R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M.C.R. Melo, B.K. Radak,
R.D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten,
L.V. Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics
on CPU and GPU architectures with NAMD, J. Chem. Phys. 153 (4) (2020)
044130, http://dx.doi.org/10.1063/5.0014475, URL http://aip.scitation.org/doi/
10.1063/5.0014475.
10
[19] E. Aprà, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, T.P. Straatsma,
M. Valiev, H.J.J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F.W. Aquino, R.
Atta-Fynn, J. Autschbach, N.P. Bauman, J.C. Becca, D.E. Bernholdt, K. Bhaskaran-
Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen,
G.N. Chuev, C.J. Cramer, J. Daily, M.J.O. Deegan, T.H. Dunning, M. Dupuis,
K.G. Dyall, G.I. Fann, S.A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza,
N. Gawande, S. Ghosh, K. Glaesemann, A.W. Götz, J. Hammond, V. Helms,
E.D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B.G. Johnson, H.
Jónsson, R.A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy,
M. Krishnan, Z. Lin, R.D. Lins, R.J. Littlefield, A.J. Logsdail, K. Lopata, W.
Ma, A.V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J.E. Moore, J.M.
Mullin, T. Nakajima, D.R. Nascimento, J.A. Nichols, P.J. Nichols, J. Nieplocha,
A. Otero-de-la Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati,
J. Pittner, L. Pollack, R.M. Richard, P. Sadayappan, G.C. Schatz, W.A. Shelton,
D.W. Silverstein, D.M.A. Smith, T.A. Soares, D. Song, M. Swart, H.L. Taylor, G.S.
Thomas, V. Tipparaju, D.G. Truhlar, K. Tsemekhman, T. Van Voorhis, Á. Vázquez-
Mayagoitia, P. Verma, O. Villa, A. Vishnu, K.D. Vogiatzis, D. Wang, J.H. Weare,
M.J. Williamson, T.L. Windus, K. Woliński, A.T. Wong, Q. Wu, C. Yang, Q. Yu, M.
Zacharias, Z. Zhang, Y. Zhao, R.J. Harrison, NWChem: Past, present, and future,
J. Chem. Phys. 152 (18) (2020) 184102, http://dx.doi.org/10.1063/5.0004997,
URL http://aip.scitation.org/doi/10.1063/5.0004997.

[20] R. Salomon-Ferrer, D.A. Case, R.C. Walker, An overview of the Amber
biomolecular simulation package: Amber biomolecular simulation package, Wi-
ley Interdiscip. Rev. Comput. Mol. Sci. 3 (2) (2013) 198–210, http://dx.
doi.org/10.1002/wcms.1121, URL https://onlinelibrary.wiley.com/doi/10.1002/
wcms.1121.

[21] T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald, F. Stein, T.
Laino, R.Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov,
M.H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A.S. Jakobovits, A.
Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg,
G.K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass,
I. Bethune, C.J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J.
Hutter, CP2K: An electronic structure and molecular dynamics software package
- Quickstep: Efficient and accurate electronic structure calculations, J. Chem.
Phys. 152 (19) (2020) 194103, http://dx.doi.org/10.1063/5.0007045, URL http:
//aip.scitation.org/doi/10.1063/5.0007045.

[22] A. Shapeev, Moment tensor potentials: A class of systematically improvable
interatomic potentials, Multiscale Model. Simul. 14 (3) (2016-01) 1153–1173,
http://dx.doi.org/10.1137/15m1054183.

[23] M. Wood, A. Thompson, Extending the accuracy of the SNAP interatomic
potential form, J. Chem. Phys. 148 (24) (2018) 241721, http://dx.doi.org/10.
1063/1.5017641.

[24] V. Deringer, M. Caro, G. Csányi, Machine learning interatomic potentials as
emerging tools for materials science, Adv. Mater. 31 (46) (2019) 1902765,
http://dx.doi.org/10.1002/adma.201902765.

[25] N. Artrith, A. Urban, G. Ceder, Efficient and accurate machine-learning interpo-
lation of atomic energies in compositions with many species, Phys. Rev. B 96
(1) (2017) http://dx.doi.org/10.1103/physrevb.96.014112.

[26] A. Bortz, M. Kalos, J. Lebowitz, A new algorithm for Monte Carlo simulation of
Ising spin systems, J. Comput. Phys. 17 (1) (1975) 10–18, http://dx.doi.org/10.
1016/0021-9991(75)90060-1, URL https://linkinghub.elsevier.com/retrieve/pii/
0021999175900601.

[27] D.T. Gillespie, A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions, J. Comput. Phys. 22 (4) (1976) 403–
434, http://dx.doi.org/10.1016/0021-9991(76)90041-3, URL https://linkinghub.
elsevier.com/retrieve/pii/0021999176900413.

[28] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys.
Chem. 81 (25) (1977) 2340–2361, http://dx.doi.org/10.1021/j100540a008, URL
https://pubs.acs.org/doi/10.1021/j100540a008.

[29] A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, First-principles theory of
ionic diffusion with nondilute carriers, Phys. Rev. B 64 (18) (2001) 184307,
http://dx.doi.org/10.1103/PhysRevB.64.184307, URL https://link.aps.org/doi/
10.1103/PhysRevB.64.184307.

[30] A. Van Der Ven, Z. Deng, S. Banerjee, S.P. Ong, Rechargeable alkali-ion battery
materials: Theory and computation, Chem. Rev. 120 (14) (2020) 6977–7019,
http://dx.doi.org/10.1021/acs.chemrev.9b00601, URL https://pubs.acs.org/doi/
abs/10.1021/acs.chemrev.9b00601.

[31] P. Xiao, G. Henkelman, Kinetic Monte Carlo study of Li intercalation in LiFePO4,
ACS Nano 12 (1) (2018) 844–851, http://dx.doi.org/10.1021/acsnano.7b08278,
URL https://pubs.acs.org/doi/10.1021/acsnano.7b08278.

[32] Z. Deng, T.P. Mishra, E. Mahayoni, Q. Ma, A.J.K. Tieu, O. Guillon, J.-N.
Chotard, V. Seznec, A.K. Cheetham, C. Masquelier, G.S. Gautam, P. Canepa,
Fundamental investigations on the sodium-ion transport properties of mixed
polyanion solid-state battery electrolytes, Nature Commun. 13 (1) (2022) 4470,
http://dx.doi.org/10.1038/s41467-022-32190-7, URL https://www.nature.com/
articles/s41467-022-32190-7.

[33] R. Pornprasertsuk, T. Holme, F.B. Prinz, Kinetic Monte Carlo simulations of solid
oxide fuel cell, J. Electrochem. Soc. 156 (12) (2009) B1406, http://dx.doi.org/
10.1149/1.3232209, URL https://iopscience.iop.org/article/10.1149/1.3232209.

http://dx.doi.org/10.1038/267585a0
http://www.nature.com/articles/267585a0
http://www.nature.com/articles/267585a0
http://www.nature.com/articles/267585a0
http://dx.doi.org/10.1073/pnas.0408930102
http://dx.doi.org/10.1073/pnas.0408930102
http://dx.doi.org/10.1073/pnas.0408930102
https://pnas.org/doi/full/10.1073/pnas.0408930102
http://dx.doi.org/10.1016/j.sbi.2009.03.004
https://linkinghub.elsevier.com/retrieve/pii/S0959440X09000372
http://dx.doi.org/10.1021/cm200679y
http://dx.doi.org/10.1021/cm200679y
http://dx.doi.org/10.1021/cm200679y
https://pubs.acs.org/doi/10.1021/cm200679y
http://dx.doi.org/10.1021/cm501563f
https://pubs.acs.org/doi/10.1021/cm501563f
https://pubs.acs.org/doi/10.1021/cm501563f
https://pubs.acs.org/doi/10.1021/cm501563f
http://dx.doi.org/10.1038/nmat4369
https://www.nature.com/articles/nmat4369
https://www.nature.com/articles/nmat4369
https://www.nature.com/articles/nmat4369
http://dx.doi.org/10.1002/anie.198712211
http://dx.doi.org/10.1002/anie.198712211
http://dx.doi.org/10.1002/anie.198712211
https://onlinelibrary.wiley.com/doi/10.1002/anie.198712211
https://onlinelibrary.wiley.com/doi/10.1002/anie.198712211
https://onlinelibrary.wiley.com/doi/10.1002/anie.198712211
http://dx.doi.org/10.1063/1.1850093
http://dx.doi.org/10.1063/1.1850093
http://dx.doi.org/10.1063/1.1850093
http://aip.scitation.org/doi/10.1063/1.1850093
http://dx.doi.org/10.1063/1.341877
http://dx.doi.org/10.1063/1.341877
http://dx.doi.org/10.1063/1.341877
http://aip.scitation.org/doi/10.1063/1.341877
http://dx.doi.org/10.1016/S0022-5096(96)00103-2
https://linkinghub.elsevier.com/retrieve/pii/S0022509696001032
https://linkinghub.elsevier.com/retrieve/pii/S0022509696001032
https://linkinghub.elsevier.com/retrieve/pii/S0022509696001032
http://dx.doi.org/10.1140/epje/e2006-00004-9
http://dx.doi.org/10.1140/epje/e2006-00004-9
http://dx.doi.org/10.1140/epje/e2006-00004-9
https://link.springer.com/10.1140/epje/e2006-00004-9
https://link.springer.com/10.1140/epje/e2006-00004-9
https://link.springer.com/10.1140/epje/e2006-00004-9
http://dx.doi.org/10.1016/j.mechmat.2005.06.006
https://linkinghub.elsevier.com/retrieve/pii/S0167663605001043
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb13
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb13
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb13
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb13
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb13
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb14
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb14
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb14
http://dx.doi.org/10.1016/S0959-440X(02)00308-1
http://dx.doi.org/10.1016/S0959-440X(02)00308-1
http://dx.doi.org/10.1016/S0959-440X(02)00308-1
https://linkinghub.elsevier.com/retrieve/pii/S0959440X02003081
https://linkinghub.elsevier.com/retrieve/pii/S0959440X02003081
https://linkinghub.elsevier.com/retrieve/pii/S0959440X02003081
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.cpc.2021.108171
https://linkinghub.elsevier.com/retrieve/pii/S0010465521002836
https://linkinghub.elsevier.com/retrieve/pii/S0010465521002836
https://linkinghub.elsevier.com/retrieve/pii/S0010465521002836
http://dx.doi.org/10.1002/jcc.1056
https://onlinelibrary.wiley.com/doi/10.1002/jcc.1056
https://onlinelibrary.wiley.com/doi/10.1002/jcc.1056
https://onlinelibrary.wiley.com/doi/10.1002/jcc.1056
http://dx.doi.org/10.1063/5.0014475
http://aip.scitation.org/doi/10.1063/5.0014475
http://aip.scitation.org/doi/10.1063/5.0014475
http://aip.scitation.org/doi/10.1063/5.0014475
http://dx.doi.org/10.1063/5.0004997
http://aip.scitation.org/doi/10.1063/5.0004997
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1121
http://dx.doi.org/10.1063/5.0007045
http://aip.scitation.org/doi/10.1063/5.0007045
http://aip.scitation.org/doi/10.1063/5.0007045
http://aip.scitation.org/doi/10.1063/5.0007045
http://dx.doi.org/10.1137/15m1054183
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1002/adma.201902765
http://dx.doi.org/10.1103/physrevb.96.014112
http://dx.doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/10.1016/0021-9991(75)90060-1
https://linkinghub.elsevier.com/retrieve/pii/0021999175900601
https://linkinghub.elsevier.com/retrieve/pii/0021999175900601
https://linkinghub.elsevier.com/retrieve/pii/0021999175900601
http://dx.doi.org/10.1016/0021-9991(76)90041-3
https://linkinghub.elsevier.com/retrieve/pii/0021999176900413
https://linkinghub.elsevier.com/retrieve/pii/0021999176900413
https://linkinghub.elsevier.com/retrieve/pii/0021999176900413
http://dx.doi.org/10.1021/j100540a008
https://pubs.acs.org/doi/10.1021/j100540a008
http://dx.doi.org/10.1103/PhysRevB.64.184307
https://link.aps.org/doi/10.1103/PhysRevB.64.184307
https://link.aps.org/doi/10.1103/PhysRevB.64.184307
https://link.aps.org/doi/10.1103/PhysRevB.64.184307
http://dx.doi.org/10.1021/acs.chemrev.9b00601
https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00601
https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00601
https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00601
http://dx.doi.org/10.1021/acsnano.7b08278
https://pubs.acs.org/doi/10.1021/acsnano.7b08278
http://dx.doi.org/10.1038/s41467-022-32190-7
https://www.nature.com/articles/s41467-022-32190-7
https://www.nature.com/articles/s41467-022-32190-7
https://www.nature.com/articles/s41467-022-32190-7
http://dx.doi.org/10.1149/1.3232209
http://dx.doi.org/10.1149/1.3232209
http://dx.doi.org/10.1149/1.3232209
https://iopscience.iop.org/article/10.1149/1.3232209


Computational Materials Science 229 (2023) 112394Z. Deng et al.
[34] A. Modak, M. Lusk, Kinetic Monte Carlo simulation of a solid-oxide fuel cell:
I. Open-circuit voltage and double layer structure, Solid State Ion. 176 (29–
30) (2005) 2181–2191, http://dx.doi.org/10.1016/j.ssi.2005.06.007, URL https:
//linkinghub.elsevier.com/retrieve/pii/S0167273805002614.

[35] M. Andersen, C. Panosetti, K. Reuter, A practical guide to surface kinetic Monte
Carlo simulations, Front. Chem. 7 (APR) (2019) 1–24, http://dx.doi.org/10.
3389/fchem.2019.00202, arXiv:1904.02561.

[36] M. Pineda, M. Stamatakis, Kinetic Monte Carlo simulations for heterogeneous
catalysis: Fundamentals, current status, and challenges, J. Chem. Phys. 156 (12)
(2022) 120902, http://dx.doi.org/10.1063/5.0083251, URL https://aip.scitation.
org/doi/10.1063/5.0083251.

[37] C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Mechanism of nucleation
and incipient growth of Re clusters in irradiated W-Re alloys from kinetic Monte
Carlo simulations, Phys. Rev. B 96 (9) (2017) 094108, http://dx.doi.org/10.
1103/PhysRevB.96.094108, URL https://link.aps.org/doi/10.1103/PhysRevB.96.
094108.

[38] A. Evteev, E. Levchenko, I. Belova, G. Murch, Shrinking kinetics by va-
cancy diffusion of hollow binary alloy nanospheres driven by the Gibbs–
Thomson effect, Phil. Mag. 88 (10) (2008) 1525–1541, http://dx.doi.org/
10.1080/14786430802213413, URL http://www.tandfonline.com/doi/abs/10.
1080/14786430802213413.

[39] C. Li, T. Nilson, L. Cao, T. Mueller, Predicting activation energies for vacancy-
mediated diffusion in alloys using a transition-state cluster expansion, Phys.
Rev. Mater. 5 (1) (2021) 013803, http://dx.doi.org/10.1103/PhysRevMaterials.
5.013803, URL https://link.aps.org/doi/10.1103/PhysRevMaterials.5.013803.

[40] X. Han, R. McAfee, J.C. Yang, Development of a versatile kinetic Monte Carlo
code to simulate physical processes in thin film nucleation and growth, Mul-
tidiscip. Model. Mater. Struct. 3 (1) (2007) 43–54, http://dx.doi.org/10.1163/
157361107781360068, URL https://www.emerald.com/insight/content/doi/10.
1163/157361107781360068/full/html.

[41] M. Apostolopoulou, R. Day, R. Hull, M. Stamatakis, A. Striolo, A kinetic Monte
Carlo approach to study fluid transport in pore networks, J. Chem. Phys. 147 (13)
(2017) 134703, http://dx.doi.org/10.1063/1.4985885, URL http://aip.scitation.
org/doi/10.1063/1.4985885.

[42] A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, D. Morgan, Nondilute diffusion
from first principles: Li diffusion in Li x TiS 2, Phys. Rev. B 78 (10) (2008)
104306, http://dx.doi.org/10.1103/PhysRevB.78.104306, URL https://link.aps.
org/doi/10.1103/PhysRevB.78.104306.

[43] J. Bhattacharya, A. Van der Ven, Phase stability and nondilute Li diffusion in
spinel Li 1 + x Ti 2 O 4, Phys. Rev. B 81 (10) (2010) 104304, http://dx.doi.org/
10.1103/PhysRevB.81.104304, URL https://link.aps.org/doi/10.1103/PhysRevB.
81.104304.

[44] A. Chatterjee, D.G. Vlachos, Multiscale spatial Monte Carlo simulations: Multi-
griding, computational singular perturbation, and hierarchical stochastic closures,
J. Chem. Phys. 124 (6) (2006) 064110, http://dx.doi.org/10.1063/1.2166380,
URL http://aip.scitation.org/doi/10.1063/1.2166380.

[45] S.D. Collins, A. Chatterjee, D.G. Vlachos, Coarse-grained kinetic Monte Carlo
models: Complex lattices, multicomponent systems, and homogenization at the
stochastic level, J. Chem. Phys. 129 (18) (2008) 184101, http://dx.doi.org/10.
1063/1.3005225, URL http://aip.scitation.org/doi/10.1063/1.3005225.

[46] Z. Deng, V. Kumar, F.T. Bölle, F. Caro, A.A. Franco, I.E. Castelli, P. Canepa,
Z.W. Seh, Towards autonomous high-throughput multiscale modelling of battery
interfaces, Energy Environ. Sci. 15 (2) (2022) 579–594, http://dx.doi.org/10.
1039/D1EE02324A, URL http://xlink.rsc.org/?DOI=D1EE02324A.

[47] Y. Gao, T.P. Mishra, S.-H. Bo, G. Sai Gautam, P. Canepa, Design
and characterization of host frameworks for facile magnesium transport,
Annu. Rev. Mater. Res. 52 (1) (2022) 129–158, http://dx.doi.org/10.1146/
annurev-matsci-081420-041617, URL https://www.annualreviews.org/doi/10.
1146/annurev-matsci-081420-041617.

[48] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their ap-
plications, Biometrika 57 (1) (1970) 97–109, http://dx.doi.org/10.1093/biomet/
57.1.97, URL https://academic.oup.com/biomet/article/57/1/97/284580.

[49] A. Magna, S. Coffa, L. Colombo, A lattice kinetic Monte Carlo code for
the description of vacancy diffusion and self-organization in Si, Nucl. In-
strum. Methods Phys. Res. B 148 (1–4) (1999) 262–267, http://dx.doi.org/10.
1016/S0168-583X(98)00798-8, URL https://linkinghub.elsevier.com/retrieve/
pii/S0168583X98007988.

[50] D.J. Dooling, L.J. Broadbelt, Generic Monte Carlo tool for kinetic modeling, Ind.
Eng. Chem. Res. 40 (2) (2001) 522–529, http://dx.doi.org/10.1021/ie000310q,
URL https://pubs.acs.org/doi/10.1021/ie000310q.

[51] S.X.M. Boerrigter, G.P.H. Josten, J. van de Streek, F.F.A. Hollander, J. Los, H.M.
Cuppen, P. Bennema, H. Meekes, MONTY: Monte Carlo crystal growth on any
crystal structure in any crystallographic orientation; application to fats, J. Phys.
Chem. A 108 (27) (2004) 5894–5902, http://dx.doi.org/10.1021/jp049804h,
URL https://pubs.acs.org/doi/10.1021/jp049804h.

[52] M. Leetmaa, N.V. Skorodumova, KMCLib: A general framework for lattice
kinetic Monte Carlo (KMC) simulations, Comput. Phys. Comm. 185 (9)
(2014) 2340–2349, http://dx.doi.org/10.1016/j.cpc.2014.04.017, URL https://
linkinghub.elsevier.com/retrieve/pii/S0010465514001519.
11
[53] M.J. Hoffmann, S. Matera, K. Reuter, Kmos: A lattice kinetic Monte Carlo
framework, Comput. Phys. Comm. 185 (7) (2014) 2138–2150, http://dx.doi.org/
10.1016/j.cpc.2014.04.003, arXiv:1401.5278 Publisher: Elsevier B.V.

[54] J.J. Ramsey, KMCThinFilm: A C++ Framework for the Rapid Development of
Lattice Kinetic Monte Carlo (kMC) Simulations of Thin Film Growth, Tech. Rep.,
US Army Research Laboratory, 2015.

[55] I. Mitchell, S. Irle, A.J. Page, A global reaction route mapping-based kinetic
Monte Carlo algorithm, J. Chem. Phys. 145 (2) (2016) 024105, http://dx.doi.
org/10.1063/1.4954660, URL http://aip.scitation.org/doi/10.1063/1.4954660.

[56] T. Danielson, J.E. Sutton, C. Hin, A. Savara, SQERTSS: Dynamic rank based
throttling of transition probabilities in kinetic Monte Carlo simulations, Comput.
Phys. Comm. 219 (2017) 149–163, http://dx.doi.org/10.1016/j.cpc.2017.05.016,
URL https://linkinghub.elsevier.com/retrieve/pii/S0010465517301583.

[57] M. Jø rgensen, H. Grönbeck, MonteCoffee: A programmable kinetic Monte Carlo
framework, J. Chem. Phys. 149 (11) (2018) 114101, http://dx.doi.org/10.1063/
1.5046635, URL http://aip.scitation.org/doi/10.1063/1.5046635.

[58] J. Li, P. Wei, S. Yang, J. Wu, P. Liu, X. He, Crystal-KMC: parallel software for lat-
tice dynamics monte carlo simulation of metal materials, Tsinghua Sci. Technol.
23 (4) (2018) 501–510, http://dx.doi.org/10.26599/TST.2018.9010107, URL
https://ieeexplore.ieee.org/document/8421558/.

[59] K. Li, H. Shang, Y. Zhang, S. Li, B. Wu, D. Wang, L. Zhang, F. Li, D. Chen, Z. Wei,
OpenKMC: a KMC design for hundred-billion-atom simulation using millions of
cores on Sunway Taihulight, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ACM, Denver
Colorado, 2019, pp. 1–16, http://dx.doi.org/10.1145/3295500.3356165, URL
https://dl.acm.org/doi/10.1145/3295500.3356165.

[60] P. Martin, J.J. Gaitero, J.S. Dolado, H. Manzano, KIMERA: A kinetic Montecarlo
code for mineral dissolution, Minerals 10 (9) (2020) 825, http://dx.doi.org/10.
3390/min10090825, URL https://www.mdpi.com/2075-163X/10/9/825.

[61] T.P. Schulze, Kinetic Monte Carlo simulations with minimal searching, Phys. Rev.
E 65 (3) (2002) 036704, http://dx.doi.org/10.1103/PhysRevE.65.036704, URL
https://link.aps.org/doi/10.1103/PhysRevE.65.036704.

[62] K. Bernacki, B. Hetényi, B.J. Berne, Multiple ‘‘time step’’ Monte Carlo simulations:
Application to charged systems with Ewald summation, J. Chem. Phys. 121 (1)
(2004) 44, http://dx.doi.org/10.1063/1.1755195, URL http://scitation.aip.org/
content/aip/journal/jcp/121/1/10.1063/1.1755195.

[63] F. Shi, Y. Shim, J.G. Amar, Parallel kinetic Monte Carlo simulations of
two-dimensional island coarsening, Phys. Rev. E 76 (3) (2007) 031607,
http://dx.doi.org/10.1103/PhysRevE.76.031607, URL https://link.aps.org/doi/
10.1103/PhysRevE.76.031607.

[64] L. Xu, G. Henkelman, Adaptive kinetic Monte Carlo for first-principles accelerated
dynamics, J. Chem. Phys. 129 (11) (2008) 114104, http://dx.doi.org/10.1063/
1.2976010, URL http://aip.scitation.org/doi/10.1063/1.2976010.

[65] A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo
algorithm for simulation of large biochemical reaction networks, J. Chem. Phys.
128 (20) (2008) 205101, http://dx.doi.org/10.1063/1.2919546, URL http://aip.
scitation.org/doi/10.1063/1.2919546.

[66] A. Chatterjee, A.F. Voter, Accurate acceleration of kinetic Monte Carlo simula-
tions through the modification of rate constants, J. Chem. Phys. 132 (19) (2010)
194101, http://dx.doi.org/10.1063/1.3409606, URL http://aip.scitation.org/doi/
10.1063/1.3409606.

[67] J. Nielsen, M. d’Avezac, J. Hetherington, M. Stamatakis, Parallel kinetic Monte
Carlo simulation framework incorporating accurate models of adsorbate lateral
interactions, J. Chem. Phys. 139 (22) (2013) 224706, http://dx.doi.org/10.1063/
1.4840395, URL http://aip.scitation.org/doi/10.1063/1.4840395.

[68] H. Xu, Y.N. Osetsky, R.E. Stoller, Simulating complex atomistic processes: On-
the-fly kinetic Monte Carlo scheme with selective active volumes, Phys. Rev.
B 84 (13) (2011) 132103, http://dx.doi.org/10.1103/PhysRevB.84.132103, URL
https://link.aps.org/doi/10.1103/PhysRevB.84.132103.

[69] D. Konwar, V.J. Bhute, A. Chatterjee, An off-lattice, self-learning kinetic Monte
Carlo method using local environments, J. Chem. Phys. 135 (17) (2011)
174103, http://dx.doi.org/10.1063/1.3657834, URL http://aip.scitation.org/doi/
10.1063/1.3657834.

[70] M. Stamatakis, D.G. Vlachos, A graph-theoretical kinetic Monte Carlo framework
for on-lattice chemical kinetics, J. Chem. Phys. 134 (21) (2011) 214115, http:
//dx.doi.org/10.1063/1.3596751, URL http://aip.scitation.org/doi/10.1063/1.
3596751.

[71] X. Guo, D. Minakata, J. Crittenden, On-the-fly kinetic Monte Carlo simulation
of aqueous phase advanced oxidation processes, Environ. Sci. Technol. 49
(15) (2015) 9230–9236, http://dx.doi.org/10.1021/acs.est.5b02034, URL https:
//pubs.acs.org/doi/10.1021/acs.est.5b02034.

[72] Q. Yang, C.A. Sing-Long, E.J. Reed, Learning reduced kinetic Monte Carlo models
of complex chemistry from molecular dynamics, Chem. Sci. 8 (8) (2017) 5781–
5796, http://dx.doi.org/10.1039/C7SC01052D, URL http://xlink.rsc.org/?DOI=
C7SC01052D.

[73] F. Pérez, B.E. Granger, J.D. Hunter, Python: An ecosystem for scientific comput-
ing, Comput. Sci. Eng. 13 (2) (2011) 13–21, http://dx.doi.org/10.1109/MCSE.
2010.119, Conference Name: Computing in Science & Engineering.

[74] Top programming languages 2022, IEEE Spectr. (2022) Section: Computing. URL
https://spectrum.ieee.org/top-programming-languages-2022.

http://dx.doi.org/10.1016/j.ssi.2005.06.007
https://linkinghub.elsevier.com/retrieve/pii/S0167273805002614
https://linkinghub.elsevier.com/retrieve/pii/S0167273805002614
https://linkinghub.elsevier.com/retrieve/pii/S0167273805002614
http://dx.doi.org/10.3389/fchem.2019.00202
http://dx.doi.org/10.3389/fchem.2019.00202
http://dx.doi.org/10.3389/fchem.2019.00202
http://arxiv.org/abs/1904.02561
http://dx.doi.org/10.1063/5.0083251
https://aip.scitation.org/doi/10.1063/5.0083251
https://aip.scitation.org/doi/10.1063/5.0083251
https://aip.scitation.org/doi/10.1063/5.0083251
http://dx.doi.org/10.1103/PhysRevB.96.094108
http://dx.doi.org/10.1103/PhysRevB.96.094108
http://dx.doi.org/10.1103/PhysRevB.96.094108
https://link.aps.org/doi/10.1103/PhysRevB.96.094108
https://link.aps.org/doi/10.1103/PhysRevB.96.094108
https://link.aps.org/doi/10.1103/PhysRevB.96.094108
http://dx.doi.org/10.1080/14786430802213413
http://dx.doi.org/10.1080/14786430802213413
http://dx.doi.org/10.1080/14786430802213413
http://www.tandfonline.com/doi/abs/10.1080/14786430802213413
http://www.tandfonline.com/doi/abs/10.1080/14786430802213413
http://www.tandfonline.com/doi/abs/10.1080/14786430802213413
http://dx.doi.org/10.1103/PhysRevMaterials.5.013803
http://dx.doi.org/10.1103/PhysRevMaterials.5.013803
http://dx.doi.org/10.1103/PhysRevMaterials.5.013803
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.013803
http://dx.doi.org/10.1163/157361107781360068
http://dx.doi.org/10.1163/157361107781360068
http://dx.doi.org/10.1163/157361107781360068
https://www.emerald.com/insight/content/doi/10.1163/157361107781360068/full/html
https://www.emerald.com/insight/content/doi/10.1163/157361107781360068/full/html
https://www.emerald.com/insight/content/doi/10.1163/157361107781360068/full/html
http://dx.doi.org/10.1063/1.4985885
http://aip.scitation.org/doi/10.1063/1.4985885
http://aip.scitation.org/doi/10.1063/1.4985885
http://aip.scitation.org/doi/10.1063/1.4985885
http://dx.doi.org/10.1103/PhysRevB.78.104306
https://link.aps.org/doi/10.1103/PhysRevB.78.104306
https://link.aps.org/doi/10.1103/PhysRevB.78.104306
https://link.aps.org/doi/10.1103/PhysRevB.78.104306
http://dx.doi.org/10.1103/PhysRevB.81.104304
http://dx.doi.org/10.1103/PhysRevB.81.104304
http://dx.doi.org/10.1103/PhysRevB.81.104304
https://link.aps.org/doi/10.1103/PhysRevB.81.104304
https://link.aps.org/doi/10.1103/PhysRevB.81.104304
https://link.aps.org/doi/10.1103/PhysRevB.81.104304
http://dx.doi.org/10.1063/1.2166380
http://aip.scitation.org/doi/10.1063/1.2166380
http://dx.doi.org/10.1063/1.3005225
http://dx.doi.org/10.1063/1.3005225
http://dx.doi.org/10.1063/1.3005225
http://aip.scitation.org/doi/10.1063/1.3005225
http://dx.doi.org/10.1039/D1EE02324A
http://dx.doi.org/10.1039/D1EE02324A
http://dx.doi.org/10.1039/D1EE02324A
http://xlink.rsc.org/?DOI=D1EE02324A
http://dx.doi.org/10.1146/annurev-matsci-081420-041617
http://dx.doi.org/10.1146/annurev-matsci-081420-041617
http://dx.doi.org/10.1146/annurev-matsci-081420-041617
https://www.annualreviews.org/doi/10.1146/annurev-matsci-081420-041617
https://www.annualreviews.org/doi/10.1146/annurev-matsci-081420-041617
https://www.annualreviews.org/doi/10.1146/annurev-matsci-081420-041617
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
https://academic.oup.com/biomet/article/57/1/97/284580
http://dx.doi.org/10.1016/S0168-583X(98)00798-8
http://dx.doi.org/10.1016/S0168-583X(98)00798-8
http://dx.doi.org/10.1016/S0168-583X(98)00798-8
https://linkinghub.elsevier.com/retrieve/pii/S0168583X98007988
https://linkinghub.elsevier.com/retrieve/pii/S0168583X98007988
https://linkinghub.elsevier.com/retrieve/pii/S0168583X98007988
http://dx.doi.org/10.1021/ie000310q
https://pubs.acs.org/doi/10.1021/ie000310q
http://dx.doi.org/10.1021/jp049804h
https://pubs.acs.org/doi/10.1021/jp049804h
http://dx.doi.org/10.1016/j.cpc.2014.04.017
https://linkinghub.elsevier.com/retrieve/pii/S0010465514001519
https://linkinghub.elsevier.com/retrieve/pii/S0010465514001519
https://linkinghub.elsevier.com/retrieve/pii/S0010465514001519
http://dx.doi.org/10.1016/j.cpc.2014.04.003
http://dx.doi.org/10.1016/j.cpc.2014.04.003
http://dx.doi.org/10.1016/j.cpc.2014.04.003
http://arxiv.org/abs/1401.5278
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb54
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb54
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb54
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb54
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb54
http://dx.doi.org/10.1063/1.4954660
http://dx.doi.org/10.1063/1.4954660
http://dx.doi.org/10.1063/1.4954660
http://aip.scitation.org/doi/10.1063/1.4954660
http://dx.doi.org/10.1016/j.cpc.2017.05.016
https://linkinghub.elsevier.com/retrieve/pii/S0010465517301583
http://dx.doi.org/10.1063/1.5046635
http://dx.doi.org/10.1063/1.5046635
http://dx.doi.org/10.1063/1.5046635
http://aip.scitation.org/doi/10.1063/1.5046635
http://dx.doi.org/10.26599/TST.2018.9010107
https://ieeexplore.ieee.org/document/8421558/
http://dx.doi.org/10.1145/3295500.3356165
https://dl.acm.org/doi/10.1145/3295500.3356165
http://dx.doi.org/10.3390/min10090825
http://dx.doi.org/10.3390/min10090825
http://dx.doi.org/10.3390/min10090825
https://www.mdpi.com/2075-163X/10/9/825
http://dx.doi.org/10.1103/PhysRevE.65.036704
https://link.aps.org/doi/10.1103/PhysRevE.65.036704
http://dx.doi.org/10.1063/1.1755195
http://scitation.aip.org/content/aip/journal/jcp/121/1/10.1063/1.1755195
http://scitation.aip.org/content/aip/journal/jcp/121/1/10.1063/1.1755195
http://scitation.aip.org/content/aip/journal/jcp/121/1/10.1063/1.1755195
http://dx.doi.org/10.1103/PhysRevE.76.031607
https://link.aps.org/doi/10.1103/PhysRevE.76.031607
https://link.aps.org/doi/10.1103/PhysRevE.76.031607
https://link.aps.org/doi/10.1103/PhysRevE.76.031607
http://dx.doi.org/10.1063/1.2976010
http://dx.doi.org/10.1063/1.2976010
http://dx.doi.org/10.1063/1.2976010
http://aip.scitation.org/doi/10.1063/1.2976010
http://dx.doi.org/10.1063/1.2919546
http://aip.scitation.org/doi/10.1063/1.2919546
http://aip.scitation.org/doi/10.1063/1.2919546
http://aip.scitation.org/doi/10.1063/1.2919546
http://dx.doi.org/10.1063/1.3409606
http://aip.scitation.org/doi/10.1063/1.3409606
http://aip.scitation.org/doi/10.1063/1.3409606
http://aip.scitation.org/doi/10.1063/1.3409606
http://dx.doi.org/10.1063/1.4840395
http://dx.doi.org/10.1063/1.4840395
http://dx.doi.org/10.1063/1.4840395
http://aip.scitation.org/doi/10.1063/1.4840395
http://dx.doi.org/10.1103/PhysRevB.84.132103
https://link.aps.org/doi/10.1103/PhysRevB.84.132103
http://dx.doi.org/10.1063/1.3657834
http://aip.scitation.org/doi/10.1063/1.3657834
http://aip.scitation.org/doi/10.1063/1.3657834
http://aip.scitation.org/doi/10.1063/1.3657834
http://dx.doi.org/10.1063/1.3596751
http://dx.doi.org/10.1063/1.3596751
http://dx.doi.org/10.1063/1.3596751
http://aip.scitation.org/doi/10.1063/1.3596751
http://aip.scitation.org/doi/10.1063/1.3596751
http://aip.scitation.org/doi/10.1063/1.3596751
http://dx.doi.org/10.1021/acs.est.5b02034
https://pubs.acs.org/doi/10.1021/acs.est.5b02034
https://pubs.acs.org/doi/10.1021/acs.est.5b02034
https://pubs.acs.org/doi/10.1021/acs.est.5b02034
http://dx.doi.org/10.1039/C7SC01052D
http://xlink.rsc.org/?DOI=C7SC01052D
http://xlink.rsc.org/?DOI=C7SC01052D
http://xlink.rsc.org/?DOI=C7SC01052D
http://dx.doi.org/10.1109/MCSE.2010.119
http://dx.doi.org/10.1109/MCSE.2010.119
http://dx.doi.org/10.1109/MCSE.2010.119
https://spectrum.ieee.org/top-programming-languages-2022


Computational Materials Science 229 (2023) 112394Z. Deng et al.
[75] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,
V.L. Chevrier, K.A. Persson, G. Ceder, Python Materials Genomics (pymatgen): A
robust, open-source python library for materials analysis, Comput. Mater. Sci.
68 (2013) 314–319, http://dx.doi.org/10.1016/j.commatsci.2012.10.028, URL
https://linkinghub.elsevier.com/retrieve/pii/S0927025612006295.

[76] S.K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT compiler, in:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC - LLVM ’15, ACM Press, Austin, Texas, 2015, pp. 1–6, http://dx.doi.org/
10.1145/2833157.2833162, URL http://dl.acm.org/citation.cfm?doid=2833157.
2833162.

[77] A. Fick, V. On liquid diffusion, Lond. Edinb. Dublin Phil. Mag. J. Sci. 10
(63) (1855) 30–39, http://dx.doi.org/10.1080/14786445508641925, URL https:
//www.tandfonline.com/doi/full/10.1080/14786445508641925.

[78] A. Fick, Ueber diffusion, Ann. Phys. Chem. 170 (1) (1855) 59–86, http://dx.
doi.org/10.1002/andp.18551700105, URL https://onlinelibrary.wiley.com/doi/
10.1002/andp.18551700105.

[79] G. Murch, The haven ratio in fast ionic conductors, Solid State Ion. 7 (3)
(1982) 177–198, http://dx.doi.org/10.1016/0167-2738(82)90050-9, URL https:
//linkinghub.elsevier.com/retrieve/pii/0167273882900509.

[80] H. Jónsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding
minimum energy paths of transitions, in: Classical and Quantum Dynamics
in Condensed Phase Simulations, WORLD SCIENTIFIC, LERICI, Villa Marigola,
1998, pp. 385–404, http://dx.doi.org/10.1142/9789812839664_0016, URL http:
//www.worldscientific.com/doi/abs/10.1142/9789812839664_0016.

[81] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic
band method for finding saddle points and minimum energy paths, J. Chem.
Phys. 113 (22) (2000) 9901–9904, http://dx.doi.org/10.1063/1.1329672, URL
http://aip.scitation.org/doi/10.1063/1.1329672.

[82] A. Van der Ven, J. Thomas, B. Puchala, A. Natarajan, First-principles statistical
mechanics of multicomponent crystals, Annu. Rev. Mater. Res. 48 (1) (2018)
27–55, http://dx.doi.org/10.1146/annurev-matsci-070317-124443, URL https://
www.annualreviews.org/doi/10.1146/annurev-matsci-070317-124443.

[83] P. Xiao, T. Shi, W. Huang, G. Ceder, Understanding surface densified phases
in Ni-rich layered compounds, ACS Energy Lett. 4 (4) (2019) 811–818, http:
//dx.doi.org/10.1021/acsenergylett.9b00122, URL https://pubs.acs.org/doi/10.
1021/acsenergylett.9b00122.
12
[84] G.H. Vineyard, Frequency factors and isotope effects in solid state rate pro-
cesses, J. Phys. Chem. Solids 3 (1–2) (1957) 121–127, http://dx.doi.org/10.
1016/0022-3697(57)90059-8, URL https://linkinghub.elsevier.com/retrieve/pii/
0022369757900598.

[85] E. Kaxiras, J. Erlebacher, Adatom diffusion by orchestrated exchange on semicon-
ductor surfaces, Phys. Rev. Lett. 72 (11) (1994) 1714–1717, http://dx.doi.org/10.
1103/PhysRevLett.72.1714, URL https://link.aps.org/doi/10.1103/PhysRevLett.
72.1714.

[86] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[87] F. Santosa, W.W. Symes, Linear inversion of band-limited reflection seismograms,
SIAM J. Sci. Stat. Comput. 7 (4) (1986) 1307–1330, http://dx.doi.org/10.1137/
0907087, URL http://epubs.siam.org/doi/10.1137/0907087.

[88] B. Puchala, J.C. Thomas, A.R. Natarajan, J.G. Goiri, S.S. Behara, J.L. Kaufman,
A.V. der Ven, CASM — A software package for first-principles based study
of multicomponent crystalline solids, Comput. Mater. Sci. 217 (2023) 111897,
http://dx.doi.org/10.1016/j.commatsci.2022.111897.

[89] L. Barroso-Luque, J.H. Yang, F. Xie, T. Chen, R.L. Kam, Z. Jadidi, P. Zhong,
G. Ceder, Smol: A Python package for cluster expansions and beyond, J. Open
Source Softw. 7 (77) (2022) 4504, http://dx.doi.org/10.21105/joss.04504.

[90] J.H. Chang, D. Kleiven, M. Melander, J. Akola, J.M. Garcia-Lastra, T. Vegge,
CLEASE: a versatile and user-friendly implementation of cluster expansion
method, J. Phys.: Condens. Matter 31 (32) (2019) 325901, http://dx.doi.org/
10.1088/1361-648X/ab1bbc.

[91] C. Kiel, Gooey, Github, 2022, URL https://github.com/chriskiehl/Gooey.
[92] P. Canepa, G. Sai Gautam, D. Hannah, R. Malik, M. Liu, K. Gallagher, K. Persson,

G. Ceder, Odyssey of multivalent cathode materials: Open questions and future
challenges, Chem. Rev. 117 (5) (2017-02-13) 4287–4341, http://dx.doi.org/10.
1021/acs.chemrev.6b00614.

http://dx.doi.org/10.1016/j.commatsci.2012.10.028
https://linkinghub.elsevier.com/retrieve/pii/S0927025612006295
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
http://dx.doi.org/10.1080/14786445508641925
https://www.tandfonline.com/doi/full/10.1080/14786445508641925
https://www.tandfonline.com/doi/full/10.1080/14786445508641925
https://www.tandfonline.com/doi/full/10.1080/14786445508641925
http://dx.doi.org/10.1002/andp.18551700105
http://dx.doi.org/10.1002/andp.18551700105
http://dx.doi.org/10.1002/andp.18551700105
https://onlinelibrary.wiley.com/doi/10.1002/andp.18551700105
https://onlinelibrary.wiley.com/doi/10.1002/andp.18551700105
https://onlinelibrary.wiley.com/doi/10.1002/andp.18551700105
http://dx.doi.org/10.1016/0167-2738(82)90050-9
https://linkinghub.elsevier.com/retrieve/pii/0167273882900509
https://linkinghub.elsevier.com/retrieve/pii/0167273882900509
https://linkinghub.elsevier.com/retrieve/pii/0167273882900509
http://dx.doi.org/10.1142/9789812839664_0016
http://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016
http://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016
http://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016
http://dx.doi.org/10.1063/1.1329672
http://aip.scitation.org/doi/10.1063/1.1329672
http://dx.doi.org/10.1146/annurev-matsci-070317-124443
https://www.annualreviews.org/doi/10.1146/annurev-matsci-070317-124443
https://www.annualreviews.org/doi/10.1146/annurev-matsci-070317-124443
https://www.annualreviews.org/doi/10.1146/annurev-matsci-070317-124443
http://dx.doi.org/10.1021/acsenergylett.9b00122
http://dx.doi.org/10.1021/acsenergylett.9b00122
http://dx.doi.org/10.1021/acsenergylett.9b00122
https://pubs.acs.org/doi/10.1021/acsenergylett.9b00122
https://pubs.acs.org/doi/10.1021/acsenergylett.9b00122
https://pubs.acs.org/doi/10.1021/acsenergylett.9b00122
http://dx.doi.org/10.1016/0022-3697(57)90059-8
http://dx.doi.org/10.1016/0022-3697(57)90059-8
http://dx.doi.org/10.1016/0022-3697(57)90059-8
https://linkinghub.elsevier.com/retrieve/pii/0022369757900598
https://linkinghub.elsevier.com/retrieve/pii/0022369757900598
https://linkinghub.elsevier.com/retrieve/pii/0022369757900598
http://dx.doi.org/10.1103/PhysRevLett.72.1714
http://dx.doi.org/10.1103/PhysRevLett.72.1714
http://dx.doi.org/10.1103/PhysRevLett.72.1714
https://link.aps.org/doi/10.1103/PhysRevLett.72.1714
https://link.aps.org/doi/10.1103/PhysRevLett.72.1714
https://link.aps.org/doi/10.1103/PhysRevLett.72.1714
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://refhub.elsevier.com/S0927-0256(23)00388-9/sb86
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1137/0907087
http://epubs.siam.org/doi/10.1137/0907087
http://dx.doi.org/10.1016/j.commatsci.2022.111897
http://dx.doi.org/10.21105/joss.04504
http://dx.doi.org/10.1088/1361-648X/ab1bbc
http://dx.doi.org/10.1088/1361-648X/ab1bbc
http://dx.doi.org/10.1088/1361-648X/ab1bbc
https://github.com/chriskiehl/Gooey
http://dx.doi.org/10.1021/acs.chemrev.6b00614
http://dx.doi.org/10.1021/acs.chemrev.6b00614
http://dx.doi.org/10.1021/acs.chemrev.6b00614

	kMCpy: A python package to simulate transport properties in solids with kinetic Monte Carlo
	Introduction
	Theoretical Background
	Overview of kMCpy
	Workflow
	Model Construction
	Events' Generation
	Model Fitting
	Kinetic Monte Carlo
	Tracking Diffusion
	Input and Output Files

	Practical Tips on Using kMCpy and Data Analysis
	Performance of kMCpy
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Nomenclature
	References


