nature materials

Obtaining V₂(PO₄)₃ by sodium extraction from single-phase $\text{Na}_x\text{V}_2(\text{PO}_4)_3 (1 \le x \le 3)$ **positive electrode materials**

Received: 23 July 2023

Accepted: 12 September 2024

Published online: 23 October 2024

Check for updates

Sunkyu Park1,2,3,11, Ziliang Wang4,5,11, Kriti Choudhary ¹ , Jean-Noël Chotard 1,6, Dany Carlier 2,6, François Fauth ⁷ , Pieremanuele Canepa 4,8,9 , Laurence Croguennec 2,6 & Christian Masquelier 1,6,10

We report on single-phase Na_xV₂(PO₄)₃ compositions (1.5 ≤ *x* ≤ 2.5) of the Na super ionic conductor type, obtained from a straightforward synthesis route. Typically, chemically prepared c-Na₂V₂(PO₄)₃, obtained by annealing an equimolar mixture of Na₃V₂(PO₄)₃ and NaV₂(PO₄)₃, exhibits a specifc sodium-ion distribution (occupancy of the Na(1) site of only 0.66(4)), whereas that of the electrochemically obtained e-Na₂V₂(PO₄)₃ (from Na₃V₂(PO₄)₃) is close to 1. Unlike conventional Na₃V₂(PO₄)₃, when used as positive electrode materials in Na-ion batteries, the Na_xV₂(PO₄)₃ compositions lead to unusual single-phase Na⁺ extraction/insertion mechanisms with continuous voltage changes upon Na⁺ extraction/ insertion. We demonstrate that the average equilibrium operating voltage observed upon Na⁺ deintercalation from single-phase Na₂V₂(PO₄)₃ is increased up to an average value of ~3.70 V versus Na+ /Na (thanks to the activation of the V^{4+}/V^{5+} redox couple) compared to 3.37 V versus Na $^{\ast}/$ Na in conventional Na₃V₂(PO₄)₃, thus leading to an increase in the theoretical energy density from 396.3 Wh kg⁻¹ to 458.1 Wh kg⁻¹. Electrochemical and chemical Na⁺ deintercalation from c-Na₂V₂(PO₄)₃ enables complete Na-ion extraction, increasing energy density.

Lithium-ion batteries are widely used for electric vehicles and portable devices as they provide substantial energy and power densities, but lithium (Li) resources are critical and unevenly distributed worldwide, making it challenging to meet the urgent demand for large-scale energy storage systems^{1,[2](#page-7-1)}. Sodium-ion batteries have received much recent attention due to the more abundant and evenly distributed resources of sodium (Na)^{[3,](#page-7-2)[4](#page-7-3)}. Sodium-containing transition metal layered oxides, Prussian blue analogues and polyanionic compounds are the main categories of positive electrode materials for Na batteries $5-8$ $5-8$. Phosphates having the Na super ionic conductor (NASICON) structure are potential options as positive electrode materials because of their structural stability, rate performance and long cycle life^{[5,](#page-7-4)[9](#page-7-6),[10](#page-7-7)}. Among

them, $Na_3V_2(PO_4)$ ₃ has been extensively studied, delivering a theoretical capacity of 117.6 mAh g^{-1} using the V^{4+/3+} redox couple (3.37 V versus Na⁺ /Na), providing a theoretical energy density of ~396 Wh kg–1 $(refs. 11-13)$ $(refs. 11-13)$ $(refs. 11-13)$. As a positive electrode material, two Na⁺ ions can be reversibly exchanged through a biphasic mechanism between $\text{Na}_3\text{V}_2(\text{PO}_4)_{3}$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$. However, the third Na^+ cannot be extracted because of the large migration energy of Na⁺ from the Na(1) site and high redox potential^{12,14}, which contributes to a weight penalty in addition to moderate operating voltage.

Through simulated phase diagrams from density functional theory (DFT), cluster expansion and Monte Carlo calculations, as well as operando synchrotron X-ray diffraction (SXRD) during Na⁺

Afull list of affiliations appears at the end of the paper. \boxtimes e-mail: [pcanepa@central.uh.edu;](mailto:pcanepa@central.uh.edu) laurence.croguennec@icmcb.cnrs.fr; [Christian.masquelier@u-picardie.fr](mailto:
Christian.masquelier@u-picardie.fr)

Fig. 1 | Synthesis of c **-Na₂V₂(PO₄)₃. a, In situ temperature-controlled SXRD** patterns for a 1:1 Na₃V₂(PO₄)₃/Na₁V₂(PO₄)₃ mixture, recorded every 3[°]C upon heating up to 500 °C and then cooling to 35 °C. **b**, Comparison of key XRD patterns with those of pristine $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$. **c**, XRD patterns of mixtures of Na₃V₂(PO₄)₃ and Na₁V₂(PO₄)₃ with different molar ratios before

annealing, collected at 25 °C. **d**, XRD patterns of $\text{Na}_x\text{V}_2(\text{PO}_4)_3$ single phases after annealing, collected at 25 °C ($x = 2y + 1$). Note that Na_xV₂(PO₄)₃ is abbreviated as Na*x*VP hereinafter. The complete series of XRD patterns collected with varying temperatures for different values of *x* are gathered in Supplementary Fig. 1a–e.

extraction/insertion, we have recently identified the existence of an intermediate Na₂V₂(PO₄)₃ phase between Na₃V₂(PO₄)₃ and Na₁V₂(PO₄)₃ (refs. [15](#page-7-12)[,16](#page-7-14)). We determined the crystal structure of the electrochemically obtained e-Na₂V₂(PO₄)₃ and undertook substantial efforts to isolate this composition through various synthesis techniques. In this study we succeeded in chemically obtaining a new c-Na₂V₂(PO₄)₃ material that shows unusual and promising properties.

Spotting e-Na₂V₂(PO₄)₃ through electrochemistry

Extended Data Fig. 1 shows the SXRD patterns collected using a conventional Na₃V₂(PO₄)₃-containing electrode in an in situ half cell operating between 2.0 and 4.3 V versus Na metal at several charge–discharge rates. As observed in recent studies^{[15](#page-7-12)[,17](#page-7-15)}, an intermediate Na₂V₂(PO₄)₃ phase appears upon battery operation in between the phases of compositions $Na_3V_2(PO_4)$ ₃ and $Na_1V_2(PO_4)_3$. The intermediate, electrochemically obtained phase, (hereafter e-Na₂V₂(PO₄)₃) appears more visible at high cycling rates, with an intermediate unit-cell volume that allows mitigating volume changes, strains and a more pronounced phase separation¹⁵, as identified in the LiFePO₄/FePO₄ system by the seminal work of Orikasa et al.¹⁸.

Formation of c \cdot Na_{*x*}V₂(PO₄)₃: temperature**controlled X-ray diffraction**

As we discovered the existence of the e-Na₂V₂(PO₄)₃ phase during preliminary operando XRD measurements¹⁵, we then naturally attempted to obtain the chemically prepared $\text{Na}_2\text{V}_2(\text{PO}_4)$ ₃ (hereafter c-Na₂V₂(PO₄)₃) through various synthesis procedures. We could apply a straightforward synthesis route to prepare single-phase c-Na_xV₂(PO₄)₃ compositions (1.5 ≤ *x* ≤ 2.5) by mixing the two end members $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$ in appropriate ratios and annealing at moderate temperatures (500–550 °C). The pristine powders of both $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$ were of high purity, and their unit-cell parameters were in excellent agreement with previously reported data^{[15](#page-7-12),19}. Here we chose to use the hexagonal unit cell (space group *R*-3*c*) to describe the monoclinic structure of $Na₃V₂(PO₄)₃$ (refs. [15](#page-7-12)[,19](#page-7-13)), for comparison purposes: lattice parameters *a* = 8.7179(2) Å, *c* = 21.8292(14) Å and *V*/*Z* = 239.90(2) Å³ where *V*/Z is the unit-cell volume per formula unit. $Na_1V_2(PO_4)_3$ was obtained as a single phase from $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ by chemical oxidation, with the following lattice parameters: *a* = 8.4276(2) Å, *c* = 21.4731(4) Å and

Fig. 2 | Structural variations in c-Na₂V₂(PO₄)₃ and e-Na₂V₂(PO₄)₃. a, SXRD patterns of Na₂V₂(PO₄)₃ at 25 °C. The top was collected with an in situ cell during electrochemical operation of a battery using a $\text{Na}_2\text{V}_2(\text{PO}_4)_3$ electrode as pristine material¹⁵. The bottom was chemically prepared c-Na₂V₂(PO₄)₃, collected within a capillary. The removed 2*θ* regions in the upper panel are ascribed to Al foil and Na metal. The asterisks in the bottom panel indicate reflection peaks that could not be indexed using the *R*-3*c* space group (details in the main text). The insets show the zoom out of Na₂V₂(PO₄)₃ crystal structures. In the SXRD patterns, red data points are observed data, black lines indicate the calculated XRD pattern, green and red vertical ticks indicate Bragg positions and blue lines are the difference between observed and calculated XRD patterns. **b**, Schematic representations of the $V_2(PO_4)_3$ lantern units with adjacent Na⁺ ions in the crystal

 $V/Z = 220.129(5)$ Å³. This corresponds to a relative unit-cell volume reduction Δ*V*/*V* = –8.3% associated with the extraction of two Na⁺ ions (and hence the oxidation of V³⁺ to V⁴⁺) from Na₃V³⁺₂(PO₄)₃, leading to ${\rm Na_{1}V^{4+}}_{2}({\rm PO_{4})_{3}}$.

Figure [1a,b](#page-1-0) illustrates the temperature-dependent transformation of a 1:1 $\text{Na}_3\text{V}_2(\text{PO}_4)_3/\text{Na}_1\text{V}_2(\text{PO}_4)_3$ mixture monitored by in situ SXRD. This leads to the formation of a single phase of composition $Na₂V₂(PO₄)₃$ at 500 °C, maintained as a single phase upon cooling to room temperature. During heating, the SXRD reflection peaks of the two pristine phases shift to lower 2*θ* angles due to thermal expansion (2*θ*, the angle between the incident beam and reflected beam). As the temperature was increased above ~300 °C, the two phases started merging concomitantly into c-Na₂V₂(PO₄)₃, and the reaction was fully completed at ~500 °C. During cooling, the SXRD reflection peaks of the c-Na₂V₂(PO₄)₃ single phase did not change, without phase separation down to 35 °C, with a slight continuous peak shift towards higher angles due to thermal contraction.

Noticeably, using the procedure described above (mixing and then annealing $yNa_3V_2(PO_4)_3 + (1-y)Na_1V_2(PO_4)_3$ powders at 500 °C), various target c-Na_xV₂(PO₄)₃ compositions (*x* = 1.5, 1.75, 2, 2.25, 2.5) were prepared. The corresponding SXRD patterns recorded at 25 °C (before and after annealing) are gathered in Fig. [1c,d](#page-1-0). Before annealing, the pristine mixtures containing the two phases $\text{Na}_3\text{V}_2(\text{PO}_4)$ ₃ and $Na_1V_2(PO_4)_3$ can be clearly distinguished, with SXRD peak intensities being directly associated with the molar ratio of each phase (Fig. [1c\)](#page-1-0). After annealing up to 500 °C, the two pristine mixtures of phases transformed into single phases of c -Na_xV₂(PO₄)₃ compositions (Fig. [1d](#page-1-0)). In c-Na_xV₂(PO₄)₃, all the main diffraction peaks can be indexed with the structures of electrochemically observed e-Na₂V₂(PO₄)₃ (left) and chemically prepared c-Na₂V₂(PO₄)₃ (right). We found two Wyckoff positions for vanadium in e-Na₂V₂(PO₄)₃ (e-Na₂VP), which are V(1a) and V(1b). Triple-dots correspond to the distance between V and V. Two V–V distances are represented: the distance between two vanadium sites belonging to the same lantern unit (intra-lantern) and the distance between two adjacent lantern units along the $[001]_{hex}$ direction (inter-lantern) of the hexagonal representation of the unit cell. Note that the e-Na₂VP displays two possible symmetries (space groups $P2_1/c$ or $P2/c$; ref. [15](#page-7-12)). We have demonstrated that $P2₁/c$ is a more suitable symmetry for the description of e-Na₂VP, which exhibits similar Na-vacancy populations with the theoretically predicted, ordered Na₂VP, considering that the temperature and the synthesis conditions can impact the e-Na₂VP structure at room temperature.

hexagonal cell and space group *R*-3*c*, with the peaks shifting towards lower 2*θ* angles for increasing values of *x*.

As determined by the Le Bail method and shown in Extended Data Fig. 2, the volume of the unit cell per formula unit (*V*/*Z*) decreases gradually when the Na content *x* varies from 2.5 to 1.5 in c-Na_xV₂(PO₄)₃, while the *c*/*a* ratio increases. Notably, the *V*/*Z* of the intermediate c-Na_xV₂(PO₄)₃ phases are found to be larger than those expected from the direct interpolation between the two end members, $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$, probably nested in the partial occupancy of the Na(1) site in the chemically prepared c-Na_xV₂(PO₄)₃, while Na(1) is fully occupied in pristine $Na_3V_2(PO_4)_3$ and $Na_1V_2(PO_4)_3$. We report a single-phase composition with continuous unit-cell volume variation as a function of Na⁺ content in $Na_xV₂(PO₄)₃$. Similarly, intermediate Li_xFePO₄ phases ($0 < x < 1$) discovered in 2005 by Delacourt et al[.20](#page-7-17) were reported to form above 300 °C, prone to phase separation when cooled to room temperature (due to a eutectic point of $Li_{0.6}$ FePO₄ encountered upon quenching)^{[20](#page-7-17)[–25](#page-7-18)}. Likewise, similar foundational work on the NaTi₂(PO₄)₃–Na₃Ti₂(PO₄)₃ system was performed in the past through the formation of $Na_xTi₂(PO₄)₃ single phases at$ ~900 °C, not stable at room temperature but disproportionate^{[26](#page-7-19)}. Delmas et al. also demonstrated the chemical short circuit method at the particle level by wetting a mixture of $Li₃Ti₂(PO₄)₃$ and $LiTi₂(PO₄)₃$ with an electrolyte to form an intermediate phase of composition $Li_{1,23}Ti_2(PO_4)_3$ (ref. [27](#page-7-20)). Here we discover that various intermediate single-phase c-Na_xV₂(PO₄)₃ compositions (1.5 ≤ *x* ≤ 2.5), stable at room temperature, can be accessed through an annealing process at moderate temperatures.

As mentioned earlier^{15[,16](#page-7-14)}, an original phase of e-Na₂V₂(PO₄)₃ composition had been electrochemically observed during battery operation, and its crystal structure differs substantially from that of the

Metastable refers to the structure with a partially occupied Na(1) site and has the lowest relative energy Δ*E* among its analogues with the same Na(1)-occ; Na(1)-occ, occupation of Na(1) site; Na(2)-occ, occupation of Na(2) site. Different metastable configurations, as characterized by their unique Na(1) or Na(2) occupation, are indicated as α, β and γ. The *d*(V–V) is the average distance between two vanadium sites belonging to the same lantern unit; *D*(V–V) corresponds to the average V–V distance between two adjacent lantern units along the [001]_{hex} direction. Computed density of states for different phases and a schematic of the structural distribution of Na and vacancies are given in the Supplementary Information. Reminder, Na(1) + 3Na(2) = *x* in Na_rV₂(PO₄)₃.

c-Na₂V₂(PO₄)₃ obtained by the chemical reaction of the mixture of the two end members, as discussed now. Figure [2a](#page-2-0) compares the corresponding SXRD patterns, indexed in the *P*21/*c* and *R*-3*c* space groups, respectively. The reflection peaks observed at *Q* (with *Q* = 4π•sin(*θ*)/*λ* and λ the wavelength of the X-ray radiation) = 0.51, 1.15 and 1.25 \AA ⁻¹ for the e-Na₂V₂(PO₄)₃ phase (indexed with a monoclinic cell, $P2₁/c$) are absent in the c-Na₂V₂(PO₄)₃ phase in the rhombohedral space group *R*-3*c*. For the c-Na₂V₂(PO₄)₃ phase, some diffraction peaks are unindexed (marked with asterisks). Using several commonly observed space groups for NASICON compositions, such as *R*32, *P*2/*m, P*2/*c*, *P*2₁/*c* and *P*-1, the monoclinic space group *P*2/*m* with lattice parameters *a* = 14.8094 Å, *b* = 8.6597 Å, *c* = 7.4997 Å, the angle *β* = 99.7135° and *V*/*Z* = 237.00 Å³ could fully index the experimental XRD pattern of c-Na₂V₂(PO₄)₃ (Extended Data Fig. 3). However, some of these diffraction peaks at 0.65–0.9 Å–1 in *Q* space are asymmetric and 'diffuse', which prevented us from finding a full description of the structure. Therefore, an average structure of higher symmetry (*R*-3*c*) was used in this study to describe c-Na₂V₂(PO₄)₃, as this approach had been shown¹⁵ to be highly appropriate for describing the Na distribution in e-Na₂V₂(PO₄)₃. Indeed, in both descriptions of e-Na₂V₂(PO₄)₃ (using the average (*R*-3*c*) or more precise (*P*21/*c*) structures), the Na(1) sites (labelled Na(1) in *R*-3*c* and Na(1a), Na(1b) in $P2₁/c$) are always fully occupied^{[15](#page-7-12)}, the monoclinic distortion being nested in the Na(2) ordering. As shown in Extended Data Fig. 4 in the average structure (*R*-3*c*), some diffraction peak intensities in the simulated XRD patterns are strongly influenced by the respective Na(1) and Na(2) site occupancies, in particular at *Q* = 1.015 Å–1 (that is, $(012)_{R3c}$. We find that the Na(1) = 0.66(4) and Na(2) = 0.55(3) distribution is the most adequate.

The cell parameters, the sodium occupancy factors and the V–O distances of both e-Na₂V₂(PO₄)₃ and c-Na₂V₂(PO₄)₃ were analysed by Rietveld refinements, as summarized in Extended Data Table 1. It appears that both e-Na₂V₂(PO₄)₃ and c-Na₂V₂(PO₄)₃ are similar in that they have the same NASICON-type framework, but a substantial difference exists in the distribution of sodium ions between the two compounds. In the case of e-Na₂V₂(PO₄)₃, the Na(1) site is fully occupied, and one-third of the Na(2) site is filled. Both structural models (*P*21/*c* and *R*-3*c*) for e-Na₂V₂(PO₄)₃ show excellent correlation between cell volumes, sodium occupancies and V–O distances. By contrast, in the case of c-Na₂V₂(PO₄)₃, Na(1) is not fully occupied but two-thirds occupied, and the remaining Na⁺ions are located at the Na(2) site (0.55(3)). This can be supported by examining the V–V distances in the NASICON structure. On the one hand, both structures (e-Na₂V₂(PO₄)₃ and c-Na₂V₂(PO₄)₃) have a similar V–V distance within a given lantern unit (intra-lantern),

with values of 4.458(18) Å and 4.457(3) Å, respectively. On the other hand, the V–V distances along the $[001]_{hex}$ direction between two different lantern units (inter-lantern) are different for e-Na₂V₂(PO₄)₃ and c-Na₂V₂(PO₄)₃. In e-Na₂V₂(PO₄)₃, the inter-lantern V-V distance is 6.24(3) Å, whereas in c-Na₂V₂(PO₄)₃, it is 6.44(3) Å. These important differences suggest that the structures are noticeably different. Indeed, since the Na(1) sites are located between two lantern units along $[001]_{\text{hex}}$, partial occupation implies lower screening (that is, stronger electrostatic repulsions) between triangular oxygen octahedral faces from two lantern units, and thus longer inter-lantern V–V distances. Note that an empty or partially filled Na(1) site in the NASICON structure is very rarely encountered. Na-free NASICON structures include Fe^{III} ₂(SO₄)₃, NbTi(PO₄)₃ and Nb₂(PO₄)₃ (ref. [5](#page-7-4)). The Na(1) site is fully occupied in NaTi₂(PO₄)₃ (ref. [28\)](#page-7-21), Na₃Fe₂(PO₄)₃ (ref. [29\)](#page-7-22), Na₂TiFe(PO₄)₃ (ref. [30\)](#page-7-23), Na₂TiCr(PO₄)₃ (ref. [31\)](#page-7-24) and Na₂VTi(PO₄)₃ (refs. [32](#page-7-25),[33](#page-7-26)). Hence, the partial occupancy of the Na(1) site in c-Na₂V₂(PO₄)₃ appears rather unique, which we attempt to rationalize.

The relatively high temperature (~500 °C) we used for preparing c-Na₃V₂(PO₄)₃ is probably the origin of the main difference in Na(1) site occupancy when compared with e-Na₃V₂(PO₄)₃, obtained at room temperature through a solid–liquid interface. We previously demonstrated that in $Na₃V₂(PO₄)₃$, the population of the Na(1) site changes with temperature, from fully occupied in the α-monoclinic phase (*C*2/*c*) at room temperature to fractional occupancies in the γ-rhombohedral phase (*R*-3*c*) at 200 °C (ref. [19](#page-7-13)). Therefore it is possible that the reaction of Na₃V₂(PO₄)₃ with Na₁V₂(PO₄)₃ at ~500 °C may produce c-Na_xV₂(PO₄)₃ with fractional occupancies at the Na(1) site.

These experimental findings and interpretations are further strengthened by our published theoretical work 16 that highlights the presence of a single-phase region associated with the mixed-valence phase Na₂V₂(PO₄)₃, as illustrated in Supplementary Fig. 5. At 300 K, no isolated single phase would be expected while performing electrochemistry between Na₃V₂(PO₄)₃ and Na₁V₂(PO₄)₃, and thus e-Na₂V₂(PO₄)₃ obtained from an operando electrochemical experiment performed at room temperature should be mixed with the Na₁V₂(PO₄)₃ phase or the Na₃V₂(PO₄)₃ phase. However, when higher temperature syntheses are conducted, that is, at temperature $T > 500$ K, the stability region of $Na_2V_2(PO_4)_3$ is much enlarged, and thus c-Na₂V₂(PO₄)₃ tends to exist as an isolated thermodynamic single phase. Our theoretical works^{16,[34](#page-7-27)} have confirmed the possibility of probing disordered $\text{Na}_1\text{V}_2(\text{PO}_4)_3$, $\text{Na}_{1.5}\text{V}_2(\text{PO}_4)_3$ and $Na₂V₂(PO₄)₃$ configurations, characterized by the specific partial fractional occupations of both Na(1) and Na(2) sites, thus explaining the chemically prepared or electrochemically obtained phases. We found

Fig. 3 | Electrochemistry of c-Na₂V₂(PO₄)₃. a, Electrochemical charge and discharge profiles of Na₂V₂(PO₄)₃ (green) and c-Na₂V₂(PO₄)₃ (pink) electrodes cycled between 2.5 and 4.3 V at C/10 (one Na⁺ in 10 h) versus Na metal. **b**, Derivative (d*Q*/d*V*) plots of the first charge and discharge cycles obtained for c-Na2V2(PO4)3 and Na3V2(PO4)3 electrodes. **c**, Discharge capacities and coulombic efficiencies of the c-Na₂V₂(PO₄)₃ electrode upon 30 cycles. **d**, GITT

curve of c-Na₂V₂(PO₄)₃ electrode versus Na metal during the first electrochemical charge–discharge cycle. The insets show zoomed-in views. **e**, Rate capability of c-Na₂V₂(PO₄)₃ electrode versus Na metal with various C rates from 0.1 C to 15 C. **f**, Electrochemical charge and discharge profiles of c-Na₂V₂(PO₄)₃ electrodes cycled between 1.3 and 3.0 V at C/10.

that the local charge arrangements on the vanadium sites with higher/ lower oxidation states may disrupt potentially stable structural arrangement between Na ions and their vacancies in Na₁M₂(PO₄)₃, thus lowering the migration barriers and enhancing the jump diffusivity of Na⁺, which, in turn, will enable the extraction of the 'last' Na⁺ion. For example, some of us recently determined that if compositions with low Na content (that is, $\text{Na}_{0+x}\text{V}_2(\text{PO}_4)$ ₃ with $x<1$) were thermodynamically stable, the Na⁺ extraction from Na₁V₂(PO₄)₃ towards an empty Na phase (that is, V₂(PO₄)₃) would be kinetically facilitated by the local charge arrangement of the mixed-valence vanadium sites $V^{4+/5+}$ at highly charged state³⁴.

To complement these statements, Table [1](#page-3-0) provides energetics computed with first-principles calculations of different Na-vacancy orderings, whose Na site occupations correspond to the c-Na₂V₂(PO₄)₃ and e-Na₂V₂(PO₄)₃ structures. These calculations rationalize the structural differences between the c-Na₂V₂(PO₄)₃ and e-Na₂V₂(PO₄)₃ structures. The electrochemically observed $\text{Na}_2\text{V}_2(\text{PO}_4)_3$ phase is the ground state (electrochemical ground state, e-GS in Table [1](#page-3-0)), whereas the chemically prepared c-Na₂V₂(PO₄)₃ phase appears as a metastable structure. Indeed, the first is characterized by the full occupancy of the Na(1) site, whereas the second shows fractional occupations of the Na(1) and Na(2) sites. Table [1](#page-3-0) also shows the computed Na-disordered structures for $\text{Na}_{1.5}\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$ compositions (Supplementary Figs. 6 and 7). The e-GS shows full occupation of the Na(1) site, whereas the metastable structures $(\alpha/\beta/\gamma)$ display a partially occupied Na(1) site. Note that for an equal Na distribution among the Na(1) and Na(2) sites, Na₂V₂(PO₄)₃, Na_{1.5}V₂(PO₄)₃ and Na₁V₂(PO₄)₃ show very mild metastability (with energies of <25 meV per atom). This indicates that changes in Na-vacancy orderings (to accommodate

changes in the composition) in the metastable structures $(\alpha/\beta/\gamma)$ can be accessed electrochemically, which is a strong indication of the solid solution mechanism for Na⁺ extraction from these compositions. The depopulation of the Na(1) site in the metastable structures increases the volume (per formula unit) in Na_xV₂(PO₄)₃ versus the corresponding e-GS (Table [1](#page-3-0) and Supplementary Fig. 8), in excellent agreement with volumes experimentally determined from Rietveld refinements for c-Na_xV₂(PO₄)₃ and e-Na_xV₂(PO₄)₃ (Extended Data Table 1). Notably, a $Na₂V₂(PO₄)₃$ configuration that has similar Na(1) and Na(2) occupations (that is, 0.66 for Na(1) and 0.55 for Na(2), for an effective composition of Na_{2.31(12)}V₂(PO₄)₃) exhibits a larger cell volume by ~1.4% than the corresponding ordered e-GS structure (that is, e-Na₂V₂(PO₄)₃). As mentioned earlier, this increase of the unit-cell volume in $Na_2V_2(PO_4)$ ₃ can be attributed to a depopulation of the Na(1) sites that increases the inter-lantern vanadium–vanadium distance (*D*(V–V); Fig. [2b](#page-2-0)). Hence we show that the partial occupation of the Na(1) site induces an increase in the unit-cell volume per formula unit, but with small changes in energies (<25 meV per atom), moving from the ordered to the disordered structures. In all three compositions examined, that is, *x* = 1, *x* = 1.5 and $x = 2.0$, the metastability of Na-vacancy orderings in Na_xV₂(PO₄)₃ appears accessible at room temperature, which indicates that these c-Na_xV₂(PO₄)₃ phases are accessible via electrochemical methods due to high Na solubility in this NASICON framework.

Electrochemical properties of c-Na₂V₂(PO₄)₃

The electrochemical properties of c-Na₂V₂(PO₄)₃ were investigated and are compared with those obtained for the conventional well-known $Na_3V_2(PO_4)$ $Na_3V_2(PO_4)$ $Na_3V_2(PO_4)$ ₃ (Fig. 3). Charge and discharge voltage–composition

Fig. 4 | Structural evolution during battery operation. a,**b**, Operando XRD measurements using c-Na₂V₂(PO₄)₃ as a positive electrode in a half cell versus Na metal upon charge and discharge cycles, within voltage windows of 1.3–3.0 V (**b**) versus Na+ /Na at C/10 (that is, one Na⁺ in 10 h) and 2.5–4.4 Volts (**a**). The right-hand plot shows voltage over time. **c**, Corresponding results (Na site

occupancies, number of Na⁺ per formula unit (f.u.), *c*/*a* ratio and *V*/*Z*) from Rietveld refinements within the voltage window of 2.5–4.4 Volts upon charge (scan numbers 1–19) and discharge (scan numbers 19–36). The error bars refer to standard deviations arising from the Rietveld refinements.

profiles of $Na_2V_2(PO_4)_3$ obtained during the first two cycles, with a half-cell configuration versus Na metal, are represented in Fig. [3a.](#page-4-0) Remarkably, $c\text{-}Na_2V_2(PO_4)$ ₃ (in pink) exhibits a sloping voltage–composition profile, unlike conventional $Na_3V_2(PO_4)$ ₃ (in green), which operates through a voltage–composition plateau at around 3.37 Volts versus Na. The first charge and discharge capacities of c-Na₂V₂(PO₄)₃ are 112 and 104 mAh g^{-1} , respectively.

Approximately 1.8 Na⁺ per formula unit was extracted from c-Na₂V₂(PO₄)₃ during the first charge, meaning that much less than one Na⁺ remains in the structure at the end of charge. This fact is remarkable, as for many other vanadium (V)-based NASICON-type materials, including the conventional $\text{Na}_3\text{V}_2(\text{PO}_4)_3$, one Na⁺ion (that is, Na₁V₂(PO₄)₃) always remains in the structure at the end of the charge³⁵⁻⁴⁰. In addition, $Na_2V_2(PO_4)_3$ operates at a much increased average voltage of ~3.70 Volts versus Na, compared to 3.37 Volts for the conventional Na3V2(PO4)3. As evidenced by the differential capacity curve (d*Q*/d*V* versus *V*) of Fig. [3b,](#page-4-0) the voltage–composition profile observed upon Na⁺ extraction from c-Na₂V₂(PO₄)₃ can be divided into two domains, at around 3.42 and 4.12 V versus Na, respectively. Approximately two

Na⁺ ions are reversibly extracted from $\text{Na}_2\text{V}^{3+}\text{V}^{4+}(\text{PO}_4)_3$, and the two distinct domains are ascribed to (1) the $V^{4+}/3+$ redox couple at ~3.45 V versus Na/Na⁺ and (2) the $V^{5+/4+}$ redox couple at -4.15 V versus Na/Na⁺. Indeed, prior work on $Na_xMV(PO_4)_3$ (M = Al (ref. [37\)](#page-7-30), Mn (refs. [41](#page-7-31)–[49\)](#page-8-0) or Fe (refs. $50-53$)) by us and others has identified the $V^{5+/4+}$ redox couple in NASICONs at a voltage close to ~4.0 Volts. Importantly, the redox activity at ~4.10 Volts of c-Na₂V₂(PO₄)₃ signifies that such electrodes possess a theoretical energy density approximately 15.5% higher than conventional Na₃V₂(PO₄)₃, exhibiting a discharge capacity of 104 mAh g^{-1} after 29 cycles (Fig. [3c](#page-4-0)). In addition, galvanostatic intermittent titration technique (GITT) experiments of c-Na₂V₂(PO₄)₃ recorded during the first electrochemical cycle show a small overpotential (around 10–30 mVolts) over the whole voltage range during both charge and dis-charge, indicating good kinetics for Na⁺ diffusion (Fig. [3d](#page-4-0)). This is further shown in Fig. [3e,](#page-4-0) which illustrates the rate capability of the studied material measured for several rates expressed in units of C from 0.1 C to 15 C, with a 1 C rate meaning full charge over a period of 1 h (and 0.1 C a full charge over 10 h and 15 C a full charge in 4 min). The discharge capacity measured at 15 C corresponds to 48.6% of that obtained at 0.1 C.

As shown in Fig. [3f,](#page-4-0) approximately two Na⁺ions can be reversibly intercalated into c-Na₂V₂(PO₄)₃, down to 0.5 Volts versus Na⁺/Na, most likely including partial electrolyte degradation through a parasitic reaction at low voltage (solid electrolyte interphase (SEI)). Extended Data Fig. 5 further supports this as it illustrates the full reversibility of the overall system, between 0.5 and 4.5 Volts for a global utilization of the Na_xV₂(PO₄)₃ framework with $0 \le x \le 4$. This may open the door for fabricating symmetrical Na₂V₂(PO₄)₃/electrolyte/Na₂V₂(PO₄)₃ cells, with liquid or solid electrolytes.

Using the local cluster expansion-based model of Wang et al.³⁴, we further evaluated the migration barriers of Na⁺ for different phases of Na₂V₂(PO₄)₃, that is, the e-GS with fully occupied Na(1); metastable α-state with Na(1) occupancy of 0.75; and metastable β-state with Na(1) occupancy of 0.5 (Table [1\)](#page-3-0). Na⁺ migration barriers between the Na(1) and Na(2) sites in Na₂V₂(PO₄)₃ tend to decrease, following the sequence of ~744.9 meV for e-GS > ~602.3 meV for metastable α-state > ~438.0 meV for metastable β-state structures. This decrease of Na⁺ migration barriers in Na₂V₂(PO₄)₃ configurations with less-occupied Na(1) sites indicates that disorder among the Na(1) and Na(2) sites eases the kinetics of Na+ migration through vacancy-mediated mechanisms.

Structural evolution upon Na+ extraction/ insertion

To investigate the structural evolution and Na⁺ extraction/insertion mechanism of $Na_2V_2(PO_4)_3$, operando SXRD experiments were performed, between 1.0 and 4.4 Volts versus Na⁺/Na at a C rate of C/9 (one Na⁺ is extracted in ~9 h), as illustrated in Fig. [4](#page-5-0). The single-phase reaction mechanism inferred from the sloping voltage–composition profile is confirmed. The XRD reflection peaks continuously shift, reversibly, towards higher or lower *Q* space during charge or discharge (Fig. [4a,b](#page-5-0)), and accordingly the unit-cell volume gradually decreases or increases (Fig. [4c](#page-5-0)). While 'classical' $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ has a flat voltage–composition profile with two successive two-phase reactions (Na₃V₂(PO₄)₃–Na₂V₂(PO₄)₃ and Na₂V₂(PO₄)₃–Na₁V₂(PO₄)₃), c-Na₂V₂(PO₄)₃ shows an entirely different reaction mechanism for Na⁺ extraction: a sloping voltage–composition profile and a full solid solution mechanism over the explored voltage region. We propose that the different reaction mechanisms are nested in the different occupation factors of the Na(1) site in e-Na₂V₂(PO₄)₃ and c-Na₂V₂(PO₄)₃. When V-based NASICON compounds, such as $Na₄MnV(PO₄)₃$ and $Na_4FeV(PO_4)$ ₃, involve V^{4+}/V^{5+} vanadium redox reactions at high voltage, above 3.9 Volts versus Na⁺/Na, they often experience an asymmetric electrochemical reaction mechanism in the following discharge $35-53$ $35-53$. Interestingly, this is not the case for the chemically prepared c-Na₂V₂(PO₄)₃. The overall electrochemical reaction is highly reversible and favours electrochemical operation over an extensive number of cycles.

The quantitative structural analysis through Rietveld refinements of the operando SXRD data also shows that the electrochemical reaction during charge and discharge is highly symmetric and reversible (Fig. [4](#page-5-0) and Extended Data Table 2). Upon charging to 3.8 Volts versus Na, one Na⁺ can be extracted and as a consequence, one Na⁺ still remains in the structure, with partially occupied Na(1) and Na(2) sites. The refined parameters of Na₁V₂(PO₄)₃ obtained from c-Na₂V₂(PO₄)₃ are summarized as they are highly sensitive to the sodium content on the Na(1) site. Interestingly, while having the same composition, 'classical' Na₁V₂(PO₄)₃ obtained from the extraction of two Na⁺ions from $Na₃V₂(PO₄)₃$ shows different unit-cell dimensions (*a* = 8.4276(2) Å, *c* = 21.4731(4) Å, *V*/*Z* = 220.13(1) Å³) with Na(1) fully occupied and empty Na(2) sites. The *V*/*Z* volumes of the pristine material and of that recovered at the end of charge are 236.35(2) $\rm \AA^3$ and 222.92(2) $\rm \AA^3$, respectively, which means that the overall volume change is less than 6% (5.7%; Extended Data Table 2). This is lower than the volume change between 'conventional' $Na₃V₂(PO₄)₃$ and $Na₁V₂(PO₄)₃$ (about 8.2%). Interestingly, the *c*/*a* ratio increases up to around mid-charge

Fig. 5 | XRD patterns of Na_{*x*}**V**₂(PQ_4)₃(x close to 0). Rietveld refinements of the XRD patterns collected at the end of charge (4.4 V) during operando measurement and for the chemically deintercalated phase from the c-Na₂V₂(PO₄)₃ powder. Refined structural parameters are listed in Extended Data Table 3.

(scan no. 12) and then decreases until the end of charge. When it comes to Na⁺ occupancy, the total number of Na⁺ ions in the structure gradually decreases during charge and then increases during discharge. However, the contribution to the decreasing number of Na⁺ ions until mid-charge is due to the depopulation of the Na(2) site with a partial transfer of Na⁺ ions from the Na(2) site to the Na(1) site: the decreasing occupancy of Na(2), until zero at mid-charge, is thus observed in parallel with an increasing occupancy of Na(1). From scan no. 14, the depopulation of the Na(1) site occurs until the end of charge (Fig. [4c\)](#page-5-0).

To ensure full oxidation of c-Na₂V₂(PO₄)₃, and for comparison to the composition obtained operando at the end of charge, chemical deintercalation from c-Na₂V₂(PO₄)₃ was carried out. The XRD profiles analysed by Rietveld refinements and structural parameters are compared in Fig. [5.](#page-6-0) The *a* parameter is further decreased for the chemically deintercalated phase in comparison to that observed for the composition recovered at the end of charge. By contrast, the *c* and *V*/*Z* parameters slightly increase. The occupancy factors for the Na(1) and Na(2) sites after the chemical deintercalation are zero, suggesting that full extraction of Na was achieved after the chemical oxidation process. The value of the V–O distance also supports this: it was 1.89(15) Å after chemical deintercalation but 1.92(3) Å at the end of the charge of up to 4.4 V versus Na⁺/Na. We were able to obtain the composition $V_2(PO_4)$ ₃ with no residual alkali ions in the NASICON host structure and with a smaller V/Z unit-cell volume reported for a $Na_vV_2(PO_4)$, NASICON structure (Extended Data Table 3).

This study presents a different class of NASICON-related materials synthesized by a straightforward route. The great tunability of NASI-CON materials will allow many transition metals to be substituted, and thus we envisage many different NASICON-type compositions being discovered, containing Ti, V, Fe or Mn as redox-active transition metal elements. The unconventional synthesis procedure developed in this study enabled us to discover phases (Extended Data Fig. 6) that would be otherwise difficult to obtain through more conventional material synthesis routes.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at [https://doi.org/10.1038/s41563-024-02023-7.](https://doi.org/10.1038/s41563-024-02023-7)

References

- 1. Armand, M. & Tarascon, J.-M. Building better batteries. *Nature* **451**, 652–657 (2008).
- 2. Tarascon, J. M. Is lithium the new gold? *Nat. Chem.* **2**, 510 (2010).
- 3. Yabuuchi, N. et al. Research development on sodium-ion batteries. *Chem. Rev.* **114**, 11636–11682 (2014).
- 4. Delmas, C. Sodium and sodium-ion batteries: 50 years of research. *Adv. Energy Mater.* **8**, 1703137 (2018).
- 5. Masquelier, C. & Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. *Chem. Rev.* **113**, 6552–6591 (2013).
- 6. Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. *Energy Environ. Sci.* **8**, 81–102 (2015).
- 7. Hosaka, T., Kubota, K., Hameed, A. S. & Komaba, S. Research development on K-ion batteries. *Chem. Rev.* **120**, 6358–6466 (2020).
- 8. Hasa, I. et al. Challenges of today for Na-based batteries of the future: from materials to cell metrics. *J. Power Sources* **482**, 228872 (2021).
- 9. Singh, B. et al. A chemical map of NaSICON electrode materials for sodium-ion batteries. *J. Mater. Chem. A* **9**, 281–292 (2021).
- 10. Ouyang, B. et al. Synthetic accessibility and stability rules of NASICONs. *Nat. Commun.* **12**, 5752 (2021).
- 11. Uebou, Y. et al. Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V). *Rep. Inst. Adv. Mater. Study Kyushu Univ.* **16**, 1–5 (2002).
- 12. Lim, S. Y., Kim, H., Shakoor, R. A., Jung, Y. & Choi, J. W. Electrochemical and thermal properties of NASICON structured $Na₃V₂(PO₄)₃$ as a sodium rechargeable battery cathode: a combined experimental and theoretical study. *J. Electrochem. Soc.* **159**, A1393–A1397 (2012).
- 13. Saravanan, K., Mason, C. W., Rudola, A., Wong, K. H. & Balaya, P. The first report on excellent cycling stability and superior rate capability of Na₃V₂(PO₄)₃ for sodium ion batteries. Adv. Energy *Mater.* **3**, 444–450 (2013).
- 14. Ishado, Y., Inoishi, A. & Okada, S. Exploring factors limiting three-Na+ extraction from Na3V2(PO4)3. *Electrochemistry* **88**, 457–462 (2020).
- 15. Park, S. et al. Crystal structure of $\text{Na}_2\text{V}_2(\text{PO}_4)_3$, an intriguing phase spotted in the Na₃V₂(PO₄)₃-Na₁V₂(PO₄)₃ system. *Chem. Mater.* **34**, 451–462 (2022).
- 16. Wang, Z. et al. Phase stability and sodium-vacancy orderings in a NaSICON electrode. *J. Mater. Chem. A* **10**, 209–217 (2022).
- 17. Zakharkin, M. V. et al. Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries. *J. Power Sources* **470**, 228231 (2020).
- 18. Orikasa, Y. et al. Direct observation of a metastable crystal phase of Li*x*FePO4 under electrochemical phase transition. *J. Am. Chem. Soc.* **135**, 5497–5500 (2013).
- 19. Chotard, J.-N. et al. Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature. *Chem. Mater.* **27**, 5982–5987 (2015).
- 20. Delacourt, C., Poizot, P., Tarascon, J. M. & Masquelier, C. The existence of a temperature-driven solid solution in Li_xFePO₄ for 0 ≤ *x* ≤ 1. *Nat. Mater.* **4**, 254–260 (2005).
- 21. Lu, J., Oyama, G., Nishimura, S. I. & Yamada, A. Increased conductivity in the metastable intermediate in Li_xFePO₄ electrode. *Chem. Mater.* **28**, 1101–1106 (2016).
- 22. Delacourt, C., Rodríguez-Carvajal, J., Schmitt, B., Tarascon, J. M. & Masquelier, C. Crystal chemistry of the olivine-type Li*x*FePO4 system (0 ≤ *x* ≤ 1) between 25 and 370 °C. *Solid State Sci.* **7**, 1506–1516 (2005).
- 23. Chen, G., Song, X. & Richardson, T. J. Metastable solid-solution phases in the LiFePO₄/FePO₄ system. *J. Electrochem. Soc.* **154**, A627–A632 (2007).
- 24. Dodd, J. L., Yazami, R. & Fultz, B. Phase diagram of Li, FePO₄. *Electrochem. Solid State Lett.* **9**, 151–155 (2006).
- 25. Nishimura, S. I., Natsui, R. & Yamada, A. Superstructure in the metastable intermediate-phase $Li_{2/3}FePO_4$ accelerating the lithium battery cathode reaction. *Angew. Chem. Int. Ed.* **54**, 8939–8942 (2015).
- 26. Delmas, C., Cherkaoui, F., Nadiri, A. & Hagenmuller, P. A NASICON-type phase as intercalation electrode: N aTi₂(PO₄)₃. *Mater. Res. Bull.* **22**, 631–639 (1987).
- 27. Delmas, C. & Nadiri, A. The chemical short circuit method. An improvement in the intercalation-deintercalation techniques. *Mater. Res. Bull.* **23**, 65–72 (1988).
- 28. Hagenmuller, P. & Delmas, C. Intercalation in 3-D skeleton structures: ionic and electronic features. *MRS Online Proc. Libr.* **210**, 323–334 (1990).
- 29. d'Yvoire, F., Pintard-Scrépel, M., Bretey, E. & de la Rochère, M. Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3: A = Li, Na, Ag, K; M = Cr, Fe. *Solid State Ion.* **9–10**, 851–857 (1983).
- 30. Patoux, S., Rousse, G., Leriche, J. B. & Masquelier, C. Structural and electrochemical studies of rhombohedral Na₂TiM(PO₄)₃ and $Li_{16}Na_{0.4}TiM(PO_{4})_{3}$ (M = Fe, Cr) phosphates. *Chem. Mater.* **15**, 2084–2093 (2003).
- 31. Kawai, K., Asakura, D., Nishimura, S.-I. & Yamada, A. Stabilization of a 4.5 V Cr⁴⁺/Cr³⁺ redox reaction in NASICON-type Na₃Cr₂(PO₄)₃ by Ti substitution. *Chem. Commun.* **55**, 13717–13720 (2019).
- 32. Wang, D. et al. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. *Nat. Commun.* **8**, 15888 (2017).
- 33. Lalere, F., Seznec, V., Courty, M., Chotard, J. N. & Masquelier, C. Coupled X-ray difraction and electrochemical studies of the mixed Ti/V-containing NASICON: Na₂TiV(PO4)₃. J. Mater. Chem. A **6**, 6654–6659 (2018).
- 34. Wang, Z. et al. Kinetic Monte Carlo simulations of sodium ion transport in NaSICON electrodes. *ACS Mater. Lett.* **5**, 2499–2507 (2023).
- 35. Chen, F. et al. A NASICON-type positive electrode for Na batteries with high energy density: Na₄MnV(PO₄)₃. *Small Methods* **3**, 1800218 (2018).
- 36. Park, S. et al. An asymmetric sodium extraction/insertion mechanism for the Fe/V-mixed NASICON Na₄FeV(PO₄)₃. *Chem. Mater.* **34**, 4142–4152 (2022).
- 37. Lalère, F. et al. Improving the energy density of $Na_3V_2(PO_4)_3$ -based positive electrodes through V/Al substitution. *J. Mater. Chem. A* **3**, 16198–16205 (2015).
- 38. Liu, R. et al. Exploring highly reversible 1.5-electron reactions $(V^{3+}/V^{4+}/V^{5+})$ in Na₃VCr(PO₄)₃ cathode for sodium-ion batteries. *ACS Appl. Mater. Interfaces* **9**, 43632–43639 (2017).
- 39. Ghosh, S., Jose, N., Senthilkumar, B., Amonpattaratkit, P. & Senguttuvan, P. Multi-redox ($V^{5+}/V^{4+}/V^{3+}/V^{2+}$) driven asymmetric sodium (de)intercalation reactions in NASICON-Na₃VIn(PO₄)₃ cathode. *J. Electrochem. Soc.* **168**, 050534 (2021).
- 40. Inoishi, A., Yoshioka, Y., Zhao, L., Kitajou, A. & Okada, S. Improvement in the energy density of Na₃V₂(PO₄)₃ by Mg substitution. *Chem ElectroChem* **4**, 2755–2759 (2017).
- 41. Zhou, W. et al. $Na_xMV(PO_4)_3$ (M = Mn, Fe, Ni) structure and properties for sodium extraction. *Nano Lett.* **16**, 7836–7841 (2016).
- 42. Zakharkin, M. V. et al. Enhancing Na⁺ extraction limit through high voltage activation of the NASICON-type $\text{Na}_{4}\text{MnV}(\text{PO}_{4})_{3}$ cathode. *ACS Appl. Energy Mater.* **1**, 5842–5846 (2018).
- 43. Xu, C. et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. *ACS Energy Lett.* **7**, 97–107 (2022).
- 44. Soundharrajan, V. et al. The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: a focused review. *J. Mater. Chem. A* **10**, 1022–1046 (2022).
- 45. Buryak, N. S. et al. High-voltage structural evolution and its kinetic consequences for the $\text{Na}_4\text{MnV}(\text{PO}_4)_3$ sodium-ion battery cathode material. *J. Power Sources* **518**, 230769 (2022).
- 46. Anishchenko, D. V., Zakharkin, M. V., Nikitina, V. A., Stevenson, K. J. & Antipov, E. V. Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials. *Electrochim. Acta* **354**, 136761 (2020).
- 47. Ghosh, S. et al. High capacity and high-rate NASICON- $Na_{3.75}V_{1.25}Mn_{0.75}(PO_4)_3$ cathode for Na-ion batteries via modulating electronic and crystal structures. *Adv. Energy Mater.* **10**, 1902918 (2020).
- 48. Park, S. et al. Irreversible electrochemical reaction at high voltage induced by distortion of Mn and V structural environments in Na4MnV(PO4)3. *Chem. Mater.* **35**, 3181–3195 (2023).
- 49. Perfilyeva, T. I. et al. Complete three-electron vanadium redox in NASICON-type $Na₃VSc(PO₄)₃$ electrode material for Na-ion batteries. *J. Electrochem. Soc.* **168**, 110550 (2021).
- 50. Park, S. et al. Crystal structures and local environments of NASICON-type $\text{Na}_3\text{FeV}(\text{PO}_4)_3$ and $\text{Na}_4\text{FeV}(\text{PO}_4)_3$ positive electrode materials for Na-ion batteries. *Chem. Mater.* **33**, 5355–5367 (2021).
- 51. Hadouchi, M. et al. Fast sodium intercalation in $Na_{3.41}E_{0.59}FeV(PO_A)₃$: a novel sodium-deficient NASICON cathode for sodium-ion batteries. *Energy Storage Mater.* **35**, 192–202 (2021).
- 52. de Boisse, B. M., Ming, J., Nishimura, S. & Yamada, A. Alkaline excess strategy to NASICON-type compounds towards higher-capacity battery electrodes. *J. Electrochem. Soc.* **163**, A1469–A1473 (2016).
- 53. Xu, C. et al. A novel NASICON-typed $\text{Na}_4\text{VMn}_{0.5}\text{Fe}_{0.5}(\text{PO}_4)_3$ cathode for high-performance Na-ion batteries. *Adv. Energy Mater.* **11**, 2100729 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2024

¹Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS, Amiens, France. ²Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux, Bordeaux INP, CNRS, Pessac, France. ³TIAMAT, Amiens, France. ⁴Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore. ⁵Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. ⁶Réseau Français sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, Amiens, France. ⁷ALBA Synchrotron, Consortium for the Exploitation of the Synchrotron Light Laboratory (CELLS), Cerdanyola del Vallès, Spain. ⁸Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore. ⁹Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. ¹⁰Institut Universitaire de France, Paris, France. ¹¹These authors contributed equally: Sunkyu Park, Ziliang Wang. \boxtimes e-mail: pcanepa@central.uh.edu; laurence.croguennec@icmcb.cnrs.fr; Christian.masquelier@u-picardie.fr

Methods

Synthesis of Na₃V₂(PO₄)₃

A carbon-coated VPO₄ precursor was first synthesized by mixing stoichiometric amounts of V_2O_5 (Alfa Aesar, 99.6%), H₃PO₄ (Alfa Aesar, 85%) and agar-agar (Fisher BioReagents) in deionized water to yield a solution that was stirred overnight in an oil bath at 80 °C. A solid residue was obtained, followed by further drying for 12 h overnight in the oven at 250 °C, before being ground again and heated at 890 °C for 2 h in an Ar atmosphere. After that, Na_3PO_4 (Acros Organics, 96%) was mixed with the resulting carbon-coated VPO₄ in a molar ratio of 1:2, and then heated at 800 °C for 2 h in an Ar atmosphere to obtain carbon-coated Na₃V₂(PO₄)₃. The prepared pristine Na₃V₂(PO₄)₃ powder contains agglomerates of several to tens of micrometres (Supplementary Fig. 2). The carbon content within the carbon-coated $Na_3V_2(PO_4)_3$ powder was about 1.8% in mass, as determined by thermogravimetric analysis (Supplementary Fig. 3).

Preparation of $\text{Na}_1\text{V}_2(\text{PO}_4)$ ₃ via chemical oxidation process

The $\text{Na}_3\text{V}_2(\text{PO}_4)$ ₃ powder was dispersed in acetonitrile (Sigma-Aldrich, 99.8%) using a magnetic stirrer, and a stoichiometric amount of a 0.1 M solution of nitronium tetrafluoroborate (Sigma-Aldrich, 95%) in acetonitrile was introduced dropwise into the first solution to produce the following chemical reaction:

 $Na_3V_2(PO_4)_3 + 2NO_2BF_4 \rightarrow Na_1V_2(PO_4)_3 + 2NaBF_4 + 2NO_2 \uparrow$.

The resulting dispersed powder in the solution was then filtered and washed with acetonitrile. The whole process was performed in an Ar-filled glove box. The Na/V/P stoichiometry ratios obtained from inductively coupled plasma spectroscopy for $\text{Na}_3\text{V}_2(\text{PO}_4)$ ₃ and $\text{Na}_1\text{V}_2(\text{PO}_4)$ ₃ are 3.04(5)/1.97(1)/2.99(4) and 1.01(5)/1.99(2)/ 2.99(3), respectively, in very good agreement with the target compositions.

Synthesis of Na_{*x***}V₂(PO₄)₃**

 $Na_xV_2(PO_4)$ ₃ compositions (*x* = 1.5, 1.75, 2, 2.25, 2.5) can be prepared with the corresponding molar ratio of $Na_3V_2(PO_4)_3$ and $Na_1V_2(PO_4)_3$ powders followed by a heat treatment in Ar atmosphere according to the following chemical reaction:

$$
y Na3V2(PO4)3 + (1 - y)Na1V2(PO4)3 \rightarrow Na1+2yV2(PO4)3
$$

(1 + 2y = x; 0.25 < y < 0.75).

Indeed, powders of these two end members $(yNa₃V₂(PO₄)₃ + (1-y)$ $Na_1V_2(PO_4)_3$) were thoroughly mixed, pelletized and sealed in a gold tube in an Ar-filled glove box prior to annealing at 500–550 °C for 12 h. $Na₁₅V₂(PO₄)₃$ was obtained by chemical oxidation and deintercalation of 1.5 Na⁺ ions from Na₃V₂(PO₄)₃ by adjusting precisely the concentration of NO₂BF₄ followed by a subsequent thermal treatment at 550 °C. Temperature-controlled in situ XRD patterns of mixtures of the precursors according to $yNa_3V_2(PO_4)_3 + (1-y)Na_1V_2(PO_4)_3 (0.25 \le y \le 0.75)$ are given in Supplementary Fig. 1a–e, with *y* = 0.25, 0.375, 0.5, 0.625 and 0.75.

Chemical analysis

The carbon content within the carbon-coated $Na₃V₂(PO₄)₃$ powder was determined by thermogravimetric analysis combined with mass spectroscopy (using a NETZSCH STA 449 C) heated to 680 °C at a heating rate of 10 $^{\circ}$ C $^{\circ}$ min⁻¹ (Supplementary Fig. 3). The morphology of the powder was investigated by scanning electron microscopy with a Hitachi Model S-4500 microscope. The chemical compositions of the $Na_xV_2(PO_4)_3$ powders were controlled using inductively coupled plasma optical emission spectroscopy with a Varian model 720-ES spectrometer after the samples were dissolved in concentrated HCl solution under heating.

X-ray diffraction

Temperature-controlled in situ SXRD measurements were performed using a 0.5-mm-diameter capillary in transmission mode (Debye– Scherrer geometry), at a wavelength of 0.95289 Å at the MSPD beamline of the ALBA Synchrotron, Spain. The SXRD patterns were collected during heating/cooling ramps of 5 °C min–1. On-the-fly data were collected for 20 s each so that a pattern was collected every ~3 °C. Every 50 °C, a longer acquisition of ~8 min was performed while keeping the temperature constant. The mixture of $Na_3V_2(PO_4)$ and $Na_1V_2(PO_4)$ ₃ in a molar ratio of 1:1 (that is, for Na_xV₂(PO₄)₃ with $x=2$) was heated to 500 °C and then cooled to 35 °C. The formation of various $Na_xV₂(PO₄)₃$ compositions ($x = 1.75, 2, 2.25$ and 2.5) was also monitored by temperature-controlled XRD measurements with a laboratory bench X-ray Co Kα₁, radiation in reflection geometry (PANalytical X'Pert Pro). The XRD patterns were collected every 50 °C from 25 °C up to 500–550 °C (the sample being in a closed system filled with He gas), and then during cooling to 25 °C, with 1 h of acquisition for each pattern.

Electrochemical measurements

Electrochemical experiments were carried out with a half-cell configuration versus Na metal in a coin-cell set-up. Positive electrodes were made of the active material, carbon black (Alfa Aesar, 99.9+%) and polyvinylidene difluoride, with a weight ratio of 73:18:9 and with a mass loading of 6–8 mg cm⁻². One Celgard and one Whatman glass fibre (grade GF/D) sheets were used as separators, and the electrolyte was 1 M NaPF₆ in a mixture of ethylene-carbonate/dimethyl-carbonate (1:1, w/w) with 2 wt% of fluoroethylene carbonate. Battery cells were operated at a rate of C/10 (corresponding to the exchange of one Na⁺ and one electron in 10 h) in the voltage window of 2.5-4.3 V versus Na⁺/Na.

Operando X-ray diffraction

Operando XRD measurements were performed using an in situ cell (equipped with a beryllium window) placed in a PANalytical Empyrean diffractometer using Cu K $\alpha_{1,2}$ radiation in reflection mode. Each XRD pattern was collected with an acquisition time of 1 h in the 2*θ* angular range of 12–40°, with a 2*θ* step size of 0.0167°. The working electrodes were composed of the chemically prepared $\text{Na}_2\text{V}_2(\text{PO}_4)$ ₃ powder mixed with carbon black (80/20 in wt%), and Na metal was used as the counter electrode. Two different voltage regions were investigated, 2.5–4.4 V and 1.3-3.0 V versus Na⁺/Na, at a rate of C/10 (one Na per formula unit within 10 h). The analysis of the XRD data was performed using the Rietveld method with FullProf Suite software. Note that operando measurements were done with a laboratory X-ray set-up in Bragg Brentano geometry (reflection), using an in situ cell with a Be window protected with an Al foil. Consequently, the intensities of the diffraction peaks at low 2*θ* angles are substantially affected by absorption (of Be and of the sample itself) but can be mathematically corrected based on the mass attenuation coefficient. The XRD patterns of Na₂V₂(PO₄)₃ collected from SXRD, from lab XRD with a standard holder, from lab XRD in an in situ cell and before and after the intensity correction are compared in Supplementary Fig. 4. The results of the Rietveld refinements are compared in Supplementary Table 1. A detailed procedure for the correction of the intensities is given in the Supplementary Information. Despite this correction, the intensity of the (012) reflection peak recorded at a low angle $(Q = 0.017 \text{ Å}^{-1})$ in an in situ cell remains lower than expected, thus affecting the values of the occupancy factors determined for the Na(1) and Na(2) sites by Rietveld refinements.

Computational methodology

In our prior theoretical work^{[16,](#page-7-14)34}, we developed a first-principles multiscale model, combining a cluster expansion formalism parameterized on DFT-computed Na-vacancy configurations with Monte Carlo simulations, to investigate phase behaviours and Na⁺ transport of Na_xV₂(PO₄)₃ positive electrode material during Na (de)intercalation (Supplementary Fig. 5). With the accuracy of first-principles DFT calculations in the strongly constrained and appropriately normed (SCAN) level of theory^{[54](#page-10-0)}, we investigated the solubility of Na over a wide range of sodium compositions (that is, 1 ≤ *x* ≤ 4). We considered a large number of Na-vacancy configurations (850 in total). A comprehensive temperature versus composition phase diagram of $Na_xV_2(PO_4)$ ₃ was derived. A close inspection of our DFT-computed structures at $Na_1V_2(PO_4)_{3}$, $Na_{1.5}V_2(PO_4)_3$ and $Na_2V_2(PO_4)_3$ results in ground state and metastable compositions, which are characterized by fully occupied Na(1) sites and partially occupied Na(1) sites, respectively. The corresponding key properties (that is, relative energies above the ground state, volume and Na(1) and Na(2) occupations) can be generated by DFT fully structural relaxations, as summarized in Table [1.](#page-3-0)

Data availability

Experimental data for Figs. [1](#page-1-0)[–5](#page-6-0) are available via Nextcloud at [https://extra.u-picardie.fr/nextcloud/index.php/s/tSZagY99WdkDnzY.](https://extra.u-picardie.fr/nextcloud/index.php/s/tSZagY99WdkDnzY) The results of the electronic structure calculations and other simulations reported in this work are freely available via Zenodo at [https://](https://zenodo.org/records/13357637) zenodo.org/records/13357637 (ref. [55](#page-10-1)). Source data are provided with this paper.

References

- 54. Sun, J., Ruzsinszky, A. & Perdew, J. Strongly constrained and appropriately normed semilocal density functional. *Phys. Rev. Lett.* **115**, 036402 (2015).
- 55. Wang, Z. & Canepa, P. caneparesearxh/paper_NM23072487B_ NVPsolidsolution: V1. *Zenodo* [https://doi.org/10.5281/](https://doi.org/10.5281/zenodo.13357637) [zenodo.13357637](https://doi.org/10.5281/zenodo.13357637) (2024).

Acknowledgements

We acknowledge C. Denage and E. Lebraud from the Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB) for their support to prepare chemical and XRD experiments, as well as ALBA (Barcelona, Spain) for SXRD experiments on the MSPD beamline (proposal number 2002421208). We are also grateful to the Agence Nationale de la Recherche (ANR) and TIAMAT for the funding (CIFRE grant) of S. Park's PhD thesis. We thank the European Union's Horizon 2020 research and innovation programme under Marie

Skłodowska-Curie grant agreement no. 945357 for funding part of K. Choudhary's PhD thesis, and the Région Nouvelle-Aquitaine and the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01) for the partial financial support of this research. P.C. acknowledges funding from the National Research Foundation under NRF Fellowship NRFF12-2020-0012. P.C., Z.W., C.M. and J.-N.C. are grateful to the ANR-NRF for the funding of the NRF2019-NRF-ANR073 Na-MASTER project.

Author contributions

The initial project of this work was conceived by L.C., C.M., J.-N.C. and P.C. Most of the experimental work was performed by S.P. and K.C., supervised by J.-N.C., D.C., L.C., F.F. and C.M. Most of the computational work was performed by Z.W., supervised by P.C. The initial draft of the manuscript was written by S.P., and all the authors contributed heavily to the discussion and final version of this manuscript. All authors were consulted and gave their written approval on the present contribution statement.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at [https://doi.org/10.1038/s41563-024-02023-7.](https://doi.org/10.1038/s41563-024-02023-7)

Supplementary information The online version contains supplementary material available at [https://doi.org/10.1038/s41563-024-02023-7.](https://doi.org/10.1038/s41563-024-02023-7)

Correspondence and requests for materials should be addressed to Pieremanuele Canepa, Laurence Croguennec or Christian Masquelier.

Peer review information *Nature Materials* thanks Shinichi Komaba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Extended Data Fig. 1 | Observation of the intermediate Na₂V₂(PO₄)₃ (Na₂VP) phase during battery operation. *Operando* **XRD measurements using pristine** Na₃V₂(PO₄)₃ as a positive electrode in a half cell versus Na metal. Voltage window of 2.0 – 4.3 V vs. Na*/Na at cycling rates of C/10, C/2, 1 C and 2 C.

Extended Data Fig. 2 | Structural evolution of Na_xV₂(PO₄)₃. Unit cell volumes per formula unit (*V*/*Z*) and *c*/*a* ratios determined for chemically synthesized c-Na_xV₂(PO₄)₃ compositions at 25 °C, as a function of the Na_x content $(1 < x < 3)$, and compared to those of Na₃V₂(PO₄)₃ and Na₁V₂(PO₄)₃. Note that the c-Na_xV₂(PO₄)₃ phases were prepared by annealing the mixtures of the

two end-members, $\text{Na}_3\text{V}_2(\text{PO}_4)_3$ and $\text{Na}_1\text{V}_2(\text{PO}_4)_3$, with the appropriate molar ratios. The e-Na₂V₂(PO₄)₃ phase electrochemically observed during *operando* is marked with blue triangle. The standard deviation on each calculated value is smaller than the size of the symbol (black square or red circle). The dashed lines joining the end members' compositions are guides for the eye.

(P2/m space group), indicating that the diffraction peaks at 0.65 - 0.9 in Q space are better explained.

Extended Data Fig. 4 | Simulations of occupancy factors of Na(1) and Na(2) sites of c-Na₂V₂(PO₄)₃. (a) SXRD pattern of the chemically prepared c-Na₂V₂(PO₄)₃ with the refined results using R-3c space group, simulated SXRD patterns with Na(1) = 0, and Na(2) = 0.66 (blue), and Na(1) = 1, and Na(2) = 0.33 (green). Enlarged reflection peaks of (012) plane (**b**), and (104), (110) planes (**c**).

Extended Data Fig. 5 | The electrochemical cyclings of Na_xV₂(PO₄)₃ cathode. Global utilization of the Na_xV₂(PO₄)₃ framework with 0 ≤ x ≤ 4, after the first discharge from OCV down to 0.5 V vs. Na*/Na. Reminder, the first discharge voltage curve is omitted, and hence the first cycle started with charging process from Na₄V₂(PO₄)₃.

Extended Data Fig. 6 | Electrochemical (dis)charge profiles of the chemically synthesized Na_xV₂(PO₄)₃ cathodes. Electrochemical charge and discharge profiles of the chemically prepared c-Na_xV₂(PO₄)₃ (x = 1.5, 1.75, 2, 2.25, 2.5) electrode materials cycled between 2.5 and 4.3 V at C/10 (1 Na⁺ in 10 h) versus Na metal.

Extended Data Table 1 | Unit cell parameters, *V***/***Z* **values, Na site occupancy factors, and average V-O distances determined** from the Rietveld refinement of the electrochemically-observed Na₂V₂(PO₄)₃ and the chemically-prepared Na₂V₂(PO₄)₃. Note that the electrochemically-observed Na₂V₂(PO₄)₃ is described in both *P*2₁/c and *R*-3c space groups for comparison <code>purposes.</code> Note that the stoichiometry ratio obtained from ICP results for the chemically- prepared Na $_2$ V $_2$ (PO $_4)_3$ is $\,$ $\mathsf{Na}_{2.08(4)}\mathsf{V}_{2.02(1)}(\mathsf{PO}_4)_{3}$

Extended Data Table 2 | Unit cell parameters, *V***/***Z* **values, Na site occupancy factors and average V-O distances determined from the Rietveld refinement of the XRD patterns collected** *operando* **during Na deintercalation from chemically-prepared** c-Na₂V₂(PO₄)₃. Comparison with those obtained for chemically deintercalated Na₂V₂(PO₄)₃. *Refined and fixed at the last stages of refinement. Note that the stoichiometry ratio obtained from ICP results for the Na₂V₂(PO₄)₃ after the chemical de-sodiation process is Na_{0.25(5)}V_{1.99(1)}(PO₄)₃

Extended Data Table 3 | Refined structural parameters of chemically deintercalated phase from the Na₂V₂(PO₄)₃ powder **collected within a capillary at 298 K. *Refined and fixed at the last stages of refinement**

